Skip to main content

Advertisement

Log in

Hybrid Graphene Oxide and NTC Semiconductor Material Absorbs and Transform Light Energy via a Novel Surface Nanoscale Plasmon Mechanical

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Graphene oxide (GO) was prepared using the improved Hummer method, and mono-dispersed manganese cobalt nickel oxide (MCN) semiconductor nanometer particles were synthesized and coated with GO. Under 980-nm infrared laser excitation, this novel hybrid material demonstrated nanometer-scale surface plasmon resonance. The same mechanism has previously only been reported in good conductors. Although the MCN semiconductor is a negative temperature coefficient material, it can realize the same effect as a good conductor. The experimental data indicated that the hybrid material absorbed infrared laser photothermal energy with a transformation efficiency more than fourfold larger than that of pure mono-disperse MCN semiconductor nanopowder. The chain heat conductivity velocity of the hybrid material compares favorably with that of metal in that it alters the laser radiation energy heat transfer method on the surface. The hybrid material is one new kind of photothermal energy transfer material by new chain nanoscale surface plasmon mechanical, it can absorb sunlight and ultra-red light totally, and is one excellent energy transform and absorb material for sunlight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hummers S, Hoffman R (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339

    Article  CAS  Google Scholar 

  2. Marcano DC, Kosynkin DV, Berlin JM et al (2010) Improved synthesis of graphene oxide [J]. ACS Nano 4(8):4806–4814

    Article  CAS  Google Scholar 

  3. Warner JH, Ru¨ mmeli MH, Ge L, Gremming T, Montanari B, Harrison NM, Bu¨ chner B, Briggs GAD (2009) Nat Nanotechnol 4:500–504

    Article  CAS  Google Scholar 

  4. Li D, Mueller MB, Gilje S, Kaner RB, Wallace GG (2008) Process-able aqueous dispersions of graphenenanosheets. Nat Nanotechnol 3:101–105

    Article  CAS  Google Scholar 

  5. Yokoyama T, Abe Y, Meguro T, Komeya K, Kondo K, Kaneko S (1996) Preparation and electrical properties of sintered bodies composed of mono-phase spinel Mn(2-x)Co2Ni(1-x)O4 (0 < x < 1) derived from rock-salt-type oxides. J Appl Phys 35:5775–5780

    Article  CAS  Google Scholar 

  6. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666

    Article  CAS  Google Scholar 

  7. Mkhoyan K, Contryman A, Silcox J, Stewart D, Eda G, Mattevi C, Miller S, Chhowalla M (2009) Atomic and electronic structure of graphene-oxide. Nano Lett 9:1058–1063

    Article  CAS  Google Scholar 

  8. Novoselov K, Geim A, Morozov S et al (2004) Electric field effect in atomically thin carbon films [J]. Science 306:666–669

    Article  CAS  Google Scholar 

  9. Nikolic MV, Paraskevopoulos KM, Aleksic’ OS et al (2007) Far infrared reflectance of sintered nickel manganite samples for negative temperature coefficient thermistors. Mater Res Bull 42:1492–1498

    Article  CAS  Google Scholar 

  10. Dreyer DR, Park S, Bielawski CW, Ruoff R (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240

    Article  CAS  Google Scholar 

  11. Ostrovsky PM, Gornyi IV, Mirlin AD (2006) Electron transport in disordered graphene. Phys Rev B 74:235443

    Article  Google Scholar 

  12. Ferrari AC et al (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:187401

    Article  CAS  Google Scholar 

  13. Grigorenko AN, Polini M, Novoselov KS (2012) Graphene plasmonics. Nat Photon 6:749–758

    Article  CAS  Google Scholar 

  14. Hontoria- Lucas C, Lo’ pez-Peinado A, Lo’pez-Gonza’lez J, Rojas-Cervantes M, Martı’n-Aranda R (1995) Study of oxygen-containing groups in a series of graphite oxides: physical and chemical characterization. Carbon 33:1585–1592

    Article  CAS  Google Scholar 

  15. Eda G, Fanchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 3:270–274

    Article  CAS  Google Scholar 

  16. Woodruff DP (ed)"The chemical physics of solid surfaces", Vol. 10, Elsevier, 2002

  17. de García Abajo FJ (2014) Graphene plasmonics: challenges and opportunities. ACS Photonics 1(3):135–152

  18. de Csete Györgyfalva GDC, Reaney IM (2001) Decomposition of NiMn2O4 spinel: an NTC thermistor material[J]. J Eur Ceram Soc 21:2145–2148

    Article  Google Scholar 

  19. Pandey D, Reifenberger R, Piner R (2008) Scanning probe microscopy study of exfoliated oxidized graphene sheets. Surf Sci 602(9):1607–1611

    Article  CAS  Google Scholar 

  20. Gao YQ, Huang ZM, Hou Y, Wu J, Ge YJ, Chu JH (2009) Optical properties of Mn1.56Co0.96Ni0.48O4 films studies by spectroscopic ellipsometry. Appl Phys Lett 94

  21. Callaway J (1974) Quantum theory of the solid state. Academic Press, New York, pp 516–520

    Google Scholar 

  22. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311(5758):189–193

    Article  CAS  Google Scholar 

  23. Polman A, Atwater HA (2005) Plasmonics: optics at the nanoscale. Mater Today 8:56

    Article  Google Scholar 

  24. Oppens FHL, Chang DE, de García Abajo FJ (2011) Graphene plasmonics: a platform for strong light-matter interactions. Nano Lett 11:3370–3377

    Article  Google Scholar 

  25. Yan H et al (2012) Tunable infrared plasmonic devices using graphene/insulator stacks. Nat Nanotechnol 7:330–334

    Article  CAS  Google Scholar 

  26. Yan H et al (2013) Damping pathways of mid-infrared plasmons in graphene nanostructures. Nat Photon 7:394–399

    Article  CAS  Google Scholar 

  27. Brar VW, Jang MS, Sherrott M, Lopez JJ, Atwater HA (2013) Highly confined tunable mid-infrared plasmonics in graphene nanoresonators. Nano Lett 13:2541–2547

    Article  CAS  Google Scholar 

  28. Low T, Avouris P (2014) Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano 8:1086–1101

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Mr. Peng Zhang [1], Ms. Didi Luo [1], Ms. Yanling Ai, Dr. Mingzhen Wang, Dr. Xiaowei Yin, Ms. Huan Li, Mr. Kun Sun, (Northwestern Polytechnical University), Mr. Xinhua Liang, and Dr. Jingyan Liu (Xi’an Non-ferrous Metal Institute). Dr. Yong Wang (Xi’An Jiaotong University, Xi’An, Shaanxi Province). All of them contributed to experimental auxiliary work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihong Su.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, L., Wan, C., Yang, P. et al. Hybrid Graphene Oxide and NTC Semiconductor Material Absorbs and Transform Light Energy via a Novel Surface Nanoscale Plasmon Mechanical. Plasmonics 11, 53–60 (2016). https://doi.org/10.1007/s11468-015-0013-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0013-4

Keywords

Navigation