Skip to main content
Log in

On photo-induced electrons in graphene-plasmonic nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Graphene (G)-plasmonic nanoparticles (NPs) systems have found immense nanoscale applications via utilizing the sensitive optical response of graphene to the photo-induced electrons transferred from attached NPs. These electrons are emitted from the plasmonic metal NPs under the influence of a Localized Surface Plasmon Resonance (LSPR). Here, we first present theoretical investigations of the photoemission electrons in the G-plasmonic NPs system influenced by the LSPR of NPs. A rigorous theoretical approach is used to determine the level of photo-exited electrons and the optimal parameters for achieving a highest photoemission yield. The photoemission of electrons is mainly driven by the surface photoelectric effect in which an electron near the particle surface absorbs photon energy and overcomes the potential barrier at the metal–graphene boundary. For a thorough investigation, we study the effects of the material and geometry of NPs and the intensity of the LSPR field on the rate of photoemission. It is shown that silver nanoparticles combined with graphene are more effective in enhancing light–matter interaction in graphene owing to the lower interfacial energy barrier and higher field enhancement. Finally, we verify that the photo-induced electron density predicted by our calculations is matched with that obtained by combining theoretical and Raman-based experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References:

  1. E.P. Randviir, D.A.C. Brownson, C.E. Banks, Mater. Today 17, 426–432 (2014)

    Google Scholar 

  2. B.L. Dasari, J.M. Nouri, D. Brabazon, S. Naher, Energy 140, 766–778 (2017)

    Google Scholar 

  3. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666–669 (2004)

    ADS  Google Scholar 

  4. S. Chen, L. Brown, M. Levendorf, W. Cai, S.Y. Ju, J. Edgeworth, X. Li, C.W. Magnuson, A. Velamkanni, R.D. Piner, ACS Nano 5, 1321–1327 (2011)

    Google Scholar 

  5. W.G. Xu, N.N. Mao, J. Zhang, Small 9, 1206–1224 (2013)

    Google Scholar 

  6. F. Xia, T. Mueller, Y. Lin, A. Valdes-Garcia, P. Avouris, Nat. Nanotechnol. 4, 839–843 (2009)

    ADS  Google Scholar 

  7. T. Mueller, F.N.A. Xia, P. Avouris, Nat. Photonics 4, 297–301 (2010)

    Google Scholar 

  8. Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, X. Duan, Nat. Commun. 2, 577–579 (2011)

    ADS  Google Scholar 

  9. B. Qiu, M. Xing, J. Zhang, Chem. Soc. Rev 47, 2165–2216 (2018)

    Google Scholar 

  10. Y. Cao, Y. Cheng, M. Sun, Appl. Spectrosc. Rev. 57, 1–38 (2021)

    Google Scholar 

  11. S. Ogawa, S. Fukushima, M. Shimatani, Sensors 20, 3563–3584 (2020)

    ADS  Google Scholar 

  12. S. Xu, J. Zhan, B. Man, S. Jiang, W. Yue, S. Gao, C. Guo, H. Liu, Z. Li, J. Wang, Y. Zhou, Nat. Commun. 8, 14902–14911 (2017)

    ADS  Google Scholar 

  13. M. Engel, M. Steiner, A. Lombardo, A.C. Ferrari, H.V. Lohneysen, P. Avouris, R. Krupke, Nat. Commun. 3, 906–911 (2012)

    ADS  Google Scholar 

  14. J. Lee, K.S. Novoselov, H.S. Shin, ACS Nano 5, 608–612 (2011)

    Google Scholar 

  15. H. Fares, M. Almokhtar, J.Q.M. Almarashi, M. Rashad, S. Moustafa, Phys. E: Low-Dimens. Syst. Nanostruct. 142, 115300–115309 (2022)

    Google Scholar 

  16. S. Huang, X. Ling, L. Liang, Y. Song, W. Fang, J. Zhang, J. Kong, V. Meunier, M.S. Dresselhaus, Nano Lett. 15, 2892–2901 (2015)

    ADS  Google Scholar 

  17. L.M. Xie, X. Ling, Y. Fang, J. Zhang, Z.F. Liu, J. Am. Chem. Soc. 131, 9890–9891 (2009)

    Google Scholar 

  18. X. Ling, L.M. Xie, Y. Fang, H. Xu, H.L. Zhang, J. Kong, M.S. Dresselhaus, J. Zhang, Z.F. Liu, Nano Lett. 10, 553–561 (2010)

    ADS  Google Scholar 

  19. X. Ling, J.X. Wu, W.G. Xu, J. Zhang, Small 8, 1365–1372 (2012)

    Google Scholar 

  20. A. Urich, A. Pospischil, M.M. Furchi, D. Dietze, K. Unterrainer, T. Mueller, Appl. Phys. Lett. 101, 153113–153116 (2012)

    ADS  Google Scholar 

  21. S. Heeg, R. Fernandez-Garcıa, A. Oikonomou, F. Schedin, R. Narula, S.A. Maier, A. Vijayaraghavan, S. Reich, Nano Lett. 13, 301 (2013)

    ADS  Google Scholar 

  22. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998)

    Google Scholar 

  23. C.F. Bohren, D.P. Gilra, J. Colloid Interface Sci. 72, 215–221 (1979)

    ADS  Google Scholar 

  24. C. Noguez, J. Phys. Chem. C 111, 3806–3819 (2007)

    Google Scholar 

  25. I.E. Protsenko, A.V. Uskov, Phys. Usp. 55, 508–518 (2012)

    ADS  Google Scholar 

  26. A.V. Uskov, I.E. Protsenko, RSh. Ikhsanov, V.E. Babicheva, S.V. Zhukovsky, A.V. Lavrinenko, E.P. O’Reilly, H. Xu, Nanoscale 6, 4716–4727 (2014)

    ADS  Google Scholar 

  27. H.-B. Sun et al., Mater. Res. Express 4, 025012–025020 (2017)

    ADS  Google Scholar 

  28. S.G. Zhang, X.W. Zhang, X. Liu, Z.G. Yin, H.L. Wang, H.L. Gao, Y.J. Zhao, Appl. Phys. Lett. 104, 121109–121113 (2014)

    ADS  Google Scholar 

  29. M. Almokhtar, H. Fares, K. Inoue, K. Matsumoto, Appl. Surf. Sci. 541, 148390–148397 (2021)

    Google Scholar 

  30. M. Almokhtar, J.Q.M. Almarashi, K. Matsumoto, H. Fares, Opt. Mater. 132, 112770 (2022)

    Google Scholar 

  31. D. Paria, H. Jeong, V. Vadakkumbatt, P. Deshpande, P. Fischer, A. Ghosh, A. Ghosh, Nanoscale 10, 7685–7693 (2018)

    Google Scholar 

  32. E. Nolle, M.Y. Shchelev, Tech. Phys. Lett. 30, 304–306 (2004)

    ADS  Google Scholar 

  33. E. Nolle, M.Y. Shchelev, Tech. Phys. 50, 1528–1530 (2005)

    Google Scholar 

  34. L.L. Shiau, S.C.K. Goh, X. Wang, M. Zhu, C.S. Tan, Z. Liu, B.K. Tay, IEEE Trans Nanotechnol. 18, 1114–1118 (2019)

    ADS  Google Scholar 

  35. Y. Du, Y. Zhao, Y. Qu, C. Chen, C. Chen, C. Chuange, Y. Zhu, J. Mater. Chem. C 2, 4683–46811 (2014)

    Google Scholar 

  36. X. Zhang, C. Shi, E. Liu, J. Li, N. Zhao, C. He, Nanoscale 7, 17079–17087 (2015)

    ADS  Google Scholar 

  37. H. Wang, S. Li, R. Ai, H. Huang, L. Shao, J. Wang, Nanoscale 12, 8095–8108 (2020)

    Google Scholar 

  38. A. Ji, R.P. Sharma, A. Kumari, N.K. Pathak, Plasmonics 9, 291–297 (2014)

    Google Scholar 

  39. S. Roopak, N.K. Pathak, A. Ji et al., Plasmonics 11, 425–432 (2016)

    Google Scholar 

  40. A. Vial, A.S. Grimault, D. Macías, D. Barchiesi, M. Chapelle, Phys Rev B 71, 085416–085422 (2005)

    ADS  Google Scholar 

  41. R.E.B. Makinson, Phys. Rev. 75, 1908–1911 (1949)

    ADS  Google Scholar 

  42. A.M. Brodsky, Y.Y. Gurevich, Sov. Phys. JETP 27, 114–121 (1968)

    ADS  Google Scholar 

  43. N.V. Smith, CRC Crit. Rev. Solid State Sci. 2, 45–83 (1971)

    Google Scholar 

  44. K.S. Novoselov et al., Phys. Stat. Sol. (b) 244, 4106–4111 (2007)

    ADS  Google Scholar 

  45. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109–162 (2009)

    ADS  Google Scholar 

  46. G. Giovannetti, P.A. Khomyakov, G. Brocks, P.J. Kelly, J. Brink, Phys. Rev. B 76, 073103–073106 (2007)

    ADS  Google Scholar 

  47. P.A. Khomyakov, G. Giovannetti, P.C. Rusu, G. Brocks, J. Brink, P.J. Kelly, Phys. Rev. B 79, 195425–195436 (2009)

    ADS  Google Scholar 

  48. F. Léonard, A. T=Alec Talin, Nat. Nanotechnol. 6, 773–783 (2011)

    ADS  Google Scholar 

  49. G. Giovannetti, P.A. Khomyakov, G. Brocks, V.M. Karpan, J. van den Brink, P.J. Kelly, Phys. Rev. Lett. 101, 026803–026806 (2008)

    ADS  Google Scholar 

  50. F. Banhart, J. Kotakoski, A.V. Krasheninnikov, ACS Nano 5, 26–41 (2011)

    Google Scholar 

  51. R.D. Averitt, S.L. Westcott, N.J. Halas, J. Opt. Soc. Am. B 16, 1824–1832 (1999)

    ADS  Google Scholar 

  52. H. Fares, M. Ahmed, S. Moustafa, Phys. Scr. 98, 035509–035522 (2023)

    ADS  Google Scholar 

  53. A.D. Rakić, A.B. Djurišić, J.M. Elazar, M.L. Majewski, Appl Opt 37, 5271–5283 (1998)

    ADS  Google Scholar 

  54. N. Matthaiakakis, H. Mizuta, M.D. Charlton, Sci. Rep. 6, 27550–27560 (2016)

    ADS  Google Scholar 

  55. V.G. Kravets, A.N. Grigorenko, R.R. Nair, P. Blake, S. Anissimova, K.S. Novoselov, A.K. Geim, Phys Rev B 81, 155413–155418 (2010)

    ADS  Google Scholar 

  56. J.C. Jiménez-García, J.A. Olmos-Asar, E.E. Franceschini, M.M. Mariscal, J Appl Electrochem. 50, 421–429 (2020)

    Google Scholar 

  57. Y. Yin, Z. Cheng, L. Wang, K. Jin, W. Wang, Sci Rep. 4, 5758–5763 (2014)

    ADS  Google Scholar 

  58. K. Zou, X. Hong, J. Zhu, Phys. Rev. B 84, 115429–115432 (2011)

    ADS  Google Scholar 

  59. S.O. Kasap, Principles of Electronic Materials and Devices, 2nd edn. (McGraw-Hill, 2002)

    Google Scholar 

  60. C. Kittel, Introduction to Solid State Physics, 8th edn. (Wiley, 2005)

    MATH  Google Scholar 

  61. G.V. Hansson, S.A. Flodström, Phys. Rev. B 18, 1572–1585 (1978)

    ADS  Google Scholar 

  62. J. Lecoeur, J.P. Bellier, C. Koehler, Electrochim. Acta 35(9), 1383–1392 (1990)

    Google Scholar 

  63. A.W. Dweydari, C.H.B. Mee, Phys. Stat. Sol. (a) 27, 223–230 (1975)

    ADS  Google Scholar 

  64. T. Fauster and W. Steinmann, Two-Photon Photoemission Spectroscopy of Image States, In P. Halevi, editor, Photonic Probes of Surfaces, Electromagnetic Waves: Recent Developments in Research, volume 2, ch. 8, 347–411 (1995).

  65. P.O. Gartland, S. Berge, B.J. Slagsvold, Phys. Rev. Lett. 28, 738–739 (1972)

    ADS  Google Scholar 

  66. Y.-J. Yu, Y. Zhao, S. Ryu, L.E. Brus, K.S. Kim, P. Kim, Nano Lett. 9, 3430–3434 (2009)

    ADS  Google Scholar 

  67. S.H. Choi, Y.L. Kim, K.M. Byun, Opt. Express 19, 458–466 (2011)

    ADS  Google Scholar 

  68. S.B. Malik, J.I. Saggu, A. Gul, B.A. Abbasi, J. Iqbal, S. Waris, Y.A. Bin Jardan, W. Chalgham, Molecules 27, 5184–5201 (2022)

    Google Scholar 

  69. S. Marhaba, Effect of Size, Shape and Environment on the Optical Response of Metallic Nanoparticles. In: Noble and Precious Metals-Properties, Nanoscale Effects and Applications, (2018)

  70. E.A. Coronado, E.R. Encinaa, Fernando D. Stefani, Nanoscale 3, 4042–4059 (2011)

    ADS  Google Scholar 

  71. M. Farokhnezhad, M. Esmaeilzadeh, Phys. Chem. Chem. Phys. 21, 18352–18362 (2019)

    Google Scholar 

  72. A. Dutta, V. Tiainen, J.J. Toppari, AIP Conf. Proc. 2220, 050012–050017 (2020)

    Google Scholar 

  73. V. Amendola, O.M. Bakr, F. Stellacci, Plasmonics 5, 85–97 (2010)

    Google Scholar 

  74. T. Fang, A. Konar, H. Xing, D. Jena, Appl. Phys. Lett. 91, 092109 (2007)

    ADS  Google Scholar 

Download references

Funding

The research reported in this publication was supported by funding from Assiut University and Taibah University.

Author information

Authors and Affiliations

Authors

Contributions

SM: conceptualization, methodology, data curation, validation, formal analysis, and writing—review and editing. J.QMA: investigation, formal analysis, writing-original draft preparation, and writing—review and editing. MA: investigation, formal analysis, writing—original draft preparation, and writing-review and editing. HF: conceptualization, methodology, data curation, validation, formal analysis, and writing—review and editing. MKZ: conceptualization, methodology, data curation, validation, formal analysis, and writing—review and editing.

Corresponding author

Correspondence to Hesham Fares.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moustafa, S., Almarashi, J.Q.M., Almokhtar, M. et al. On photo-induced electrons in graphene-plasmonic nanoparticles. Appl. Phys. A 129, 376 (2023). https://doi.org/10.1007/s00339-023-06646-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06646-6

Keywords

Navigation