Skip to main content
Log in

Impact of a Dielectric Layer on the Resonant Conditions of Nanograting Structures

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We study the resonant wavelength of nanograting structures covered by a dielectric medium. We find that the resonant wavelength oscillates as the thickness of the thin dielectric layer increases due to the cavity formed by the dielectric layer. The amplitude of this oscillation in the resonant wavelength is small when the minimum reflection occurs in the nanograting structure. For a plasmonic sensor covered by a dielectric medium, a small oscillation in the resonant wavelength as the thickness of the dielectric medium changes is preferred. We also study the impact of a rounded corner on the resonant wavelength and find that the rounded corners with a small radius of r effectively reduce the nanogroove depth by about 0.2 r. Results from the finite-difference time-domain (FDTD) method agree very well with the phase-matching condition, using parameters calculated from the rigorous coupled-wave analysis (RCWA) method. These results will lead to a better understanding of the accuracy of plasmonic sensors covered by dielectric media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Jiří H, Sinclair SY, Gnter G (1999) Surface plasmon resonance sensors: review. Sens Actuators B 54(1–2):3–15

    Google Scholar 

  2. William LB, Alain D, Thomas WE (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  Google Scholar 

  3. Ekmel O (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189–193

    Article  Google Scholar 

  4. Wen DL, Fei D, Jonathan H, Stephen YC (2011) Three dimensional cavity nanoantenna coupled plasmonic nanodots for ultrahigh and uniform surface-enhanced Raman scattering over large area. Opt Express 19(5):3925–3936

    Article  Google Scholar 

  5. Jeffrey NA, Paige Hall W, Olga L, Nilam CS, Jing Z, Richard P, Van D (2008) Biosensing with plasmonic nanosensors. Nat Mater 7:442–453

    Article  Google Scholar 

  6. Alexandre GB (2012) Plasmonics for future biosensors. Nat Photon 6:709–713

    Article  Google Scholar 

  7. Ian MW, Xudong F (2008) On the performance quantification of resonant refractive index sensors. Opt Express 16(2):1020–1028

    Article  Google Scholar 

  8. Lin W, Xiaodong Z, Ping B (2014) Plasmonic metals for nanohole-array surface plasmon field-enhanced fluorescence spectroscopy biosensing. Plasmonics. 9:825–833

  9. Tiffany H, Xueli L, Jonathan H (2013) Plasmonic grating nanostructure to detect refractive index. In: Frontiers in Optics. paper FTh2D, Orlando

  10. Gordon II JG, Ernst S (1980) Surface plasmons as a probe of the electrochemical interface. Surface Sci 101(1–3):49–506

    Google Scholar 

  11. Claes N, Bo L, Tommy L (1982) Gas detection by means of surface plasmon resonance. Sens Actuators 3:79–88

    Article  Google Scholar 

  12. Kahl M, Voges E (2000) Analysis of plasmon resonance and surface-enhanced Raman scattering on periodic silver structures. Phys Rev B 61:14078–14088

    Article  CAS  Google Scholar 

  13. Francisco L, Ignacio T, Mario MJ (2010) Light intensity enhancement inside the grooves of metallic gratings. J Opt Soc Am B 27(10):1998–2006

    Article  Google Scholar 

  14. López-Ríos T, Wirgin A (1984) Role of waveguide and surface plasmon resonances in surface-enhanced Raman scattering at coldly evaporated metallic films. Solid State Commun 52(2):197–201

    Article  Google Scholar 

  15. Wirgin A, Maradudin AA (1985) Resonant enhancement of the electric field in the grooves of bare metallic gratings exposed to S-polarized light. Phys Rev B 31:5573–5576

    Article  CAS  Google Scholar 

  16. Wirgin A, Maradudin AA (1986) Resonant response of a bare metallic gratings to S-polarized light. Prog Surf Sci 22(1):1–99

    Article  Google Scholar 

  17. García-Vidal FJ, Sánchez-Dehesa J, Dechelette A, Bustrarret E, Lpez-Ros T, Fournier T, Pannetier B (1999) Localized surface plasmons in lamellar metallic gratings. J Light wave Technol 17(11):2191–2195

    Article  Google Scholar 

  18. Garca-Vidal FJ, Martín-Moreno L (2002) Transmission and focusing of light in one-dimensional periodically nanostructured metals. Phys Rev B 66:155412

    Article  Google Scholar 

  19. López-Ríos T, Mendoza D, García-Vidal FJ, Snchez-Dehesa J, Pannetier B (1998) Surface shape resonances in lamellar metallic gratings. Phys Rev Lett 81:665–668

    Article  Google Scholar 

  20. Lalanne P, Hugonin JP, Astilean S, Palamaru M, Möller KD (2000) One-mode model and Airy-like formulae for one-dimensional metallic gratings. J Opt A: Pure Appl Opt 2(1):48–51

    Article  Google Scholar 

  21. Yilei L, Hugen Y, Damon BF, Xiang M, Wenjuan Z, Richard MO, Tony FH, Phaedon A (2014) Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers. Nano Lett 14(3):1573–1577

    Article  Google Scholar 

  22. Moharam MG, Grann EB, Pommet DA, Gaylord TK (1995) Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. J Opt Soc Am A 12(5):1068–1076

    Article  Google Scholar 

  23. Li XF , Yu SF (2010) Extremely high sensitive plasmonic refractive index sensors based on metallic grating. Plasmonics 5:389–394

    Article  Google Scholar 

  24. Lifeng L (1996) Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings. J Opt Soc Am A 13(5):1024–1035

    Article  Google Scholar 

  25. Palik ED (1985) Handbook of Optical Constants of Solids Part II. Academic

  26. Patrice G, Jean-Philippe T, Evangelos G, Romain B, Mikhail AK, Marlan OS, Federico C (2010) Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings. Nano Lett 10(12):4880–4883

    Article  Google Scholar 

  27. Siwen Z, Haitao L, Guoguang M (2011) Electromagnetic enhancement by a periodic array of nanogrooves in a metallic substrate. J Opt Soc Am A 28(5):879–886

    Article  Google Scholar 

  28. Maier SA (2007) Plasmonics: Fundamentals and Applications. Springer, New York

    Google Scholar 

  29. Likang C, Jing Z, Wenli B, Qing W, xin W, Guofeng S (2010) Spatial mode selection by the phase modulation of subwavelength plasmonic grating. Plasmonics 5:423–428

    Article  Google Scholar 

  30. Alina K, Olga K, Mark A, Benny H, Aid G, Ibrahim A (2009) Theoretical and experimental investigation of enhanced transmission through periodic metal nanoslits for sensing in water environment. Plasmonics 4:281–292

    Article  Google Scholar 

  31. Adam DM, Richard PVD (2003) Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett 3(8):1057–1062

    Article  Google Scholar 

  32. Alexandre GB, Reuven G, Brian L, Karen LK (2004) Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films. Langmuir 20(12):4813– 4815

    Article  Google Scholar 

  33. Na L, Martin M, Tomas W, Mario H, Harald G (2003) Infrared perfect absorber and its application as plasmonic sensor. Nano Lett 10(7):2342–2348

    Google Scholar 

  34. Hyungsoon I, Si HL, Nathan JW, Timothy WJ, Nathan CL, Prashant N, David JN, Sang-Hyun Oh (2011) Template-stripped smooth Ag nanohole arrays with silica shells for surface plasmon resonance biosensing. ACS Nano 5(8):6244–6253

    Article  Google Scholar 

  35. Antonine L, Hyungsoon I, Nathan CL, Sang-Hyun Oh (2007) Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors. Appl Phys Lett 90:243110

    Article  Google Scholar 

  36. Jian Y, Pol VD (2011) Improvement of figure of merit for gold nanobar array plasmonic sensors. Plasmonics 6:665–671

    Article  Google Scholar 

  37. Yang S, Jianhua Z, Tianran L, Yuting T, Ruibin J, Mingxuan L, Guohui X, Jinhao Z, ZhangKai Z, Xuehua W, Chongjun J, Jianfang W (2013) Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit. Nat Commun 4:2381

    Google Scholar 

  38. Lin P (2007) Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor. Appl Phys Lett 91:123112

    Article  Google Scholar 

  39. Imogen MP, Yousif AK, Koray A, Harry AA (2011) Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing. ACS Nano 5(10):8167–8174

    Article  Google Scholar 

  40. Jan B, Andreas T, Arpad J, Ulrich H, Carsten S (2010) The optimal aspect ratio of Gold nanorods for plasmonic bio-sensing. Plasmonics 5:161–167

    Article  Google Scholar 

  41. Jianjun C, Zhi L, Yujiao Z, Zhongliang D, Jinghua X, Qihuang G (2013) Coupled-resonator-induced fano resonances for plasmonic sensing with ultra-high figure of merits. Plasmonics 8:1627–1631

    Article  Google Scholar 

  42. Hyun CK, Xing C (2009) SERS-active substrate based on gap surface plasmon polaritons. Opt Express 17 (20):17234– 17241

    Article  Google Scholar 

  43. Siwen Z, Haitao L, Guoguang M (2010) Electromagnetic enhancement by a single nano-groove in metallic substrate. J Opt Soc Am A 27(7):1555–1560

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported in part by a Baylor ECS research initiation grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, C., Huang, T., Zhang, X. et al. Impact of a Dielectric Layer on the Resonant Conditions of Nanograting Structures. Plasmonics 10, 419–427 (2015). https://doi.org/10.1007/s11468-014-9823-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9823-z

Keywords

Navigation