Skip to main content
Log in

Localized Surface Plasmon Resonance Enhanced Third-Order Nonlinearity of Al Nanoshells in Silica

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Third-order nonlinear optical properties of Al nanoshells in silica were studied by using the Maxwell-Garnett theory. Simulation results reveal that the third-order nonlinearity of composite can be remarkably enhanced near the localized surface plasmon resonance (LSPR) of Al nanoshells. This enhanced third-order nonlinearity can be achieved in the deep-ultraviolet to near-visible light region by tailoring Al shell thickness. Owing to a phase-shift enhancement of the complex nonlinear refraction induced by Al nanoshells, the composite exhibits a strongly negative nonlinear refraction index n eff near the response frequency despite of the positive nonlinear refractive property of the silica substrate. However, the most strongly negative n eff occurs on the long wavelength side of LSPR, and this deviation becomes larger with decreasing the shell thickness. This has been interpreted by the size-dependent electron surface scattering. Similarly, the nonlinear susceptibility as well as the corresponding figure of merit also exhibits a strong dependence on the shell thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Garcia MA (2011) Surface plasmons in metallic nanoparticles: fundamentals and applications. J Phys D Appl Phys 44:283001

    Article  Google Scholar 

  2. Singh V, Aghamkar P (2014) Surface plasmon enhanced third-order optical nonlinearity of Ag nanocomposite film. Appl Phys Lett 104:111112

    Article  Google Scholar 

  3. Kauranen M, Zayats AV (2012) Nonlinear plasmonics. Nat Photonics 6:737–748

    Article  CAS  Google Scholar 

  4. Stepanov AL (2011) Nonlinear optical properties of implanted metal nanoparticles in various transparent matrixes: a review. Rev Adv Mater Sci 27:115–145

    CAS  Google Scholar 

  5. Pathak NK, Ji A, Sharma RP (2014) Tunable properties of surface plasmon resonances: the influence of core–shell thickness and dielectric environment. Plasmonics 9:651–657

    Article  CAS  Google Scholar 

  6. Barroso AJS, Gómez-Malagón LA (2014) Simulation of the nonlinear optical properties of colloids containing metallic core–dielectric shell nanoparticles. Plasmonics 9:193–199

    Article  Google Scholar 

  7. del Coso R, Solis J (2004) Relation between nonlinear refractive index and third-order susceptibility in absorbing media. J Opt Soc Am B 21:640–644

    Article  Google Scholar 

  8. Kohlgraf-Owens DC, Kik PG (2008) Numerical study of surface plasmon enhanced nonlinear absorption and refraction. Opt Express 16:16823–16834

    Article  Google Scholar 

  9. Li C (2003) Identifying the isolated transition metal ions/oxides in molecular sieves and on oxide supports by UV resonance Raman spectroscopy. J Catal 216:203–212

    Article  CAS  Google Scholar 

  10. Sun M, Zhang S, Fang Y, Yang Z, Wu D, Dong B, Xu H (2009) Near- and deep-ultraviolet resonance Raman spectroscopy of pyrazine-Al4 complex and Al3-pyrazine-Al3 junction. J Phys Chem C 113:19328–19334

    Article  CAS  Google Scholar 

  11. Jha SK, Ahmed Z, Agio M, Ekinci Y, Löffler JF (2012) Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays. J Am Chem Soc 134:1966–1969

    Article  CAS  Google Scholar 

  12. Kang L, Lin ZS, Qin JG, Chen CT (2013) Two novel nonlinear optical carbonates in the deep-ultraviolet region: KBeCO3F and RbAlCO3F2. Sci Rep 3:1366

    Google Scholar 

  13. Wang D, Li WX, Ding LG, Zeng HP (2014) Enhanced XUV pulse generation at 89 nm via nonlinear interaction of UV femtosecond filaments. Opt Lett 39:4140–4143

    Article  CAS  Google Scholar 

  14. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin

    Book  Google Scholar 

  15. Sigle DO, Perkins E, Baumberg JJ, Mahajan S (2013) Reproducible deep-UV SERRS on aluminum nanovoids. J Phys Chem Lett 4:1449–1452

    Article  CAS  Google Scholar 

  16. Chowdhury MH, Ray K, Gray SK, Pond J, Lakowicz JR (2009) Aluminum nanoparticles as substrates for metal-enhanced fluorescence in the ultraviolet for the label-free detection of biomolecules. Anal Chem 81:1397–1403

    Article  CAS  Google Scholar 

  17. Honda M, Kumamoto Y, Taguchi A, Saito Y, Kawata S (2014) Plasmon-enhanced UV photocatalysis. Appl Phys Lett 104:061108

    Article  Google Scholar 

  18. Stockman MI, Kurlayev KB, George TF (1999) Linear and nonlinear optical susceptibilities of Maxwell Garnett composites: dipolar spectral theory. Phys Rev B 60:17071–17083

    Article  CAS  Google Scholar 

  19. Ross IN, Toner WT, Hooker CJ, Barr JRM, Coffey I (1990) Nonlinear properties of silica and air for picosecond ultraviolet pulses. J Mod Opt 37:555–573

    Article  CAS  Google Scholar 

  20. Palik ED (1985) Handbook of optical constants of solids. New York

  21. Moskovits M, Srnová-Šloufová I, Vlčková B (2002) Bimetallic Ag-Au nanoparticles: extracting meaningful optical constants from the surface-plasmon extinction spectrum. J Chem Phys 116:10435–10446

    Article  CAS  Google Scholar 

  22. Peña O, Pal U, Rodríguez-Fernández L, Crespo-Sosa A (2008) Linear optical response of metallic nanoshells in different dielectric media. J Opt Soc Am B 25:1371–1379

    Article  Google Scholar 

  23. Wang J, Jia GY, Mu XY, Liu CL (2013) Quasi-two-dimensional Ag nanoparticle formation in silica by Xe ion irradiation and subsequent Ag ion implantation. Appl Phys Lett 102:133102

    Article  Google Scholar 

  24. Ma GH, Sun WX, Tang SH, Zhang HZ, Shen ZX, Qian SX (2002) Size and dielectric dependence of the third-order nonlinear optical response of Au nanocrystals embedded in matrices. Opt Lett 27:1043–1045

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors acknowledge the financial supports from Natural Science Foundation of China (NSFC) (Nos. 11175129 and 11175235) and Natural Science Foundation of Tianjin (No. 12JCZDJC 26900).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangyi Jia or Changlong Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, G., Liu, C. & Dai, H. Localized Surface Plasmon Resonance Enhanced Third-Order Nonlinearity of Al Nanoshells in Silica. Plasmonics 10, 211–217 (2015). https://doi.org/10.1007/s11468-014-9795-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9795-z

Keywords

Navigation