Skip to main content
Log in

Simulation of the Nonlinear Optical Properties of Colloids Containing Metallic Core–Dielectric Shell Nanoparticles

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Nonlinear (NL) optical properties of composite materials containing metallic core–dielectric shell nanoparticles in aqueous solution were investigated numerically using the Maxwell–Garnett model and the degenerate electron gas model. Influence of geometry and excitation laser intensity was considered to describe the local field factor and the third-order NL susceptibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Link S, El-Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103:8410–8426

    Article  CAS  Google Scholar 

  2. Gómez LA, de Araújo CB, Brito Silva AM, Galembeck A (2007) Influence of stabilizing agents on the nonlinear susceptibility of silver nanoparticles. JOSA B 24:2136–2140

    Article  Google Scholar 

  3. Liz-Marzán LM, Giersig M, Mulvaney P (1996) Synthesis of nanosized gold–silica core–shell particles. Langmuir 12:4329–4335

    Article  Google Scholar 

  4. Ung T, Liz-Marzán LM, Mulvaney P (2001) Optical properties of thin films of Au@SiO2 particles. J Phys Chem B 105:3441–3452

    Article  CAS  Google Scholar 

  5. Aslan K, Wu M, Lakowicz JR, Geddes CD (2007) Fluorescent core-shell Ag@ SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms. J Am Chem Soc 129:1524–1525

    Article  CAS  Google Scholar 

  6. Brown MD, Suteewong T, Kumar RSS, D’Innocenzo V, Petrozza A, Lee MM, Wiesner U, Snaith HJ (2010) Plasmonic dye-sensitized solar cells using core–shell metal–insulator nanoparticles. Nano Lett 11:438–445

    Article  Google Scholar 

  7. Lu Y, Yin Y, Li ZY, Xia Y (2002) Synthesis and self-assembly of Au@ SiO2 core–shell colloids. Nano Lett 2:785–788

    Article  CAS  Google Scholar 

  8. Hamanaka Y, Fukuta K, Nakamura A, Liz-Marzán LM, Mulvaney P (2004) Enhancement of third-order nonlinear optical susceptibilities in silica-capped Au nanoparticle films with very high concentrations. Appl Phys Lett 84:4938–4940

    Article  CAS  Google Scholar 

  9. Yang Y, Hori M, Hayakawa T, Nogami M (2005) Self-assembled 3-dimensional arrays of Au@ SiO2 core–shell nanoparticles for enhanced optical nonlinearities. Surf Sci 579:215–224

    Article  CAS  Google Scholar 

  10. Neeves AE, Birnboim MH (1989) Composite structures for the enhancement of nonlinear-optical susceptibility. JOSA B 6:787–796

    Article  CAS  Google Scholar 

  11. Monteiro-Filho JB, Gómez-Malagón LA (2012) Resonant third order nonlinear optical susceptibility of gold nanoparticles. JOSA B 29:1793–1798

    Article  CAS  Google Scholar 

  12. Drachev VP, Buin AK, Nakotte H, Shalaev VM (2004) Size dependent χ(3) for conduction electrons in Ag nanoparticles. Nano Lett 4:1535–1539

    Article  CAS  Google Scholar 

  13. Rautian SG (1997) Nonlinear saturation spectroscopy of the degenerate electron gas in spherical metallic particles. JETP 85:451–461

    Article  Google Scholar 

  14. Averitt RD, Westcott SL, Halas NJ (1999) Linear optical properties of gold nanoshells. JOSA B 16:1824–1832

    Article  CAS  Google Scholar 

  15. Chettiar UK, Engheta N (2012) Internal homogenization: effective permittivity of a coated sphere. Opt Express 20:22976–22986

    Article  Google Scholar 

  16. Etchegoin PG, Le Ru EC, Meyer M (2006) An analytic model for the optical properties of gold. J Chem Phys 125:164705

    Article  CAS  Google Scholar 

  17. Damasceno AR, Gómez-Malagón LA (2013) Linear and nonlinear optical properties of highly concentrated gold nanoparticles. Appl Phys B 112:241–246

    Article  CAS  Google Scholar 

  18. Mizrahi V, DeLong KW, Stegeman GI, Saifi MA, Andrejco MJ (1989) Two-photon absorption as a limitation to all-optical switching. Opt Lett 14:1140–1142

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (FACEPE), and Escola Politécnica de Pernambuco (POLI-UPE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis A. Gómez-Malagón.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barroso, A.J.S., Gómez-Malagón, L.A. Simulation of the Nonlinear Optical Properties of Colloids Containing Metallic Core–Dielectric Shell Nanoparticles. Plasmonics 9, 193–199 (2014). https://doi.org/10.1007/s11468-013-9612-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-013-9612-0

Keywords

Navigation