Skip to main content
Log in

The Study of Surface Plasmon Resonance in Au-Ag-Au Three-Layered Bimetallic Nanoshell: The Effect of Separate Ag Layer

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Localized surface plasmon resonance (LSPR) properties of Au-Ag-Au three-layered nanoshell are investigated theoretically using the quasi-static electricity. Triple-bands LSPRs have been observed in the absorption spectrum. Both the peak wavelength and intensity could be fine tuned by altering the thickness and radius of the separate Ag layer. The properties and physical origin of the LSPR in the Au-Ag-Au three-layered nanoshell is much different from that of Au-dielectric-Au three-layered nanoshell. The corresponding physical mechanism has been illustrated by plotting the local electric field patterns and analyzing the interaction of the surface charges from different metal interfaces. Although the LSPR of Au-Ag-Au three-layered nanoshell is affected by the plasmon hybridization from all metal surfaces, it has been found that the plasmon coupling in different metallic layer takes main effect on the LSPR properties of different absorption peaks. These results indicate that the different type of metallic layers appearing alternately in the multilayered nanoshells could create abundant tunable LSPR modes, which provides potential for multiplex biosensing based on LSPR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Goh D, Gong T, Dinish US, Maiti KK, Fu CY, Yong KT, Olivo M, Triblock P (2012) Copolymer encapsulated gold nanorods as biocompatible localized plasmon resonance-enhanced scattering probes for dark-field imaging of cancer cells. Plasmonics 7:595–601

    Article  CAS  Google Scholar 

  2. Khlebtsov B, Khanadeev V, Khlebtsov N (2010) Tunable depolarized light scattering from gold and gold/silver nanorods. Phys Chem Chem Phys 12:3210–3218

    Article  CAS  Google Scholar 

  3. Zhu J, Zhu K, Huang LQ (2008) Using gold colloid nanoparticles to modulate the surface enhanced fluorescence of Rhodamine B. Phys Lett A 372:3283–3288

    Article  CAS  Google Scholar 

  4. Dulkeith E, Morteani AC, Niedereichholz T, Klar TA, Feldmann J, Levi SA, van Veggel FCJM, Reinhoudt DN, Moller M, Gittins DI (2002) Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects. Phys Rev Lett 89:203002

    Article  CAS  Google Scholar 

  5. Dawson C, Formanek P, Fischer D, Simon F, Janke A, Uhlmann P, Stamm M (2013) Polymers as templates for Au and Au/Ag bimetallic nanorods: UV−Vis and surface enhanced Raman spectroscopy Rafael Contreras-Caceres. Chem Mater 25:158–169

    Article  Google Scholar 

  6. Sekhon JS, Malik HK, Verma SS (2013) DDA simulations of noble metal and alloy nanocubes for tunable optical properties in biological imaging and sensing. RSC Adv 3:15427–15434

    Article  CAS  Google Scholar 

  7. Saha A, Basiruddin SK, Sarkar R, Pradhan N, Jana NR (2009) Functionalized plasmonic-fluorescent nanoparticles for imaging and detection. J Phys Chem C 113:18492–18498

    Article  CAS  Google Scholar 

  8. Cesca T, Calvelli P, Battaglin G, Mazzoldi P, Mattei G (2012) Local-field enhancement effect on the nonlinear optical response of gold-silver nanoplanets. Opt Express 20:4537–4547

    Article  CAS  Google Scholar 

  9. Xu Q, Liu F, Liu Y, Cui K, Feng X, Zhang W, Huang Y (2013) Broadband light absorption enhancement in dye-sensitized solar cells with Au–Ag alloy popcorn nanoparticles. Sci Rep 3:2112

    Google Scholar 

  10. Yang J, Lee JY, Too HP (2005) Core–shell Ag–Au nanoparticles from replacement reaction in organic medium. J Phys Chem B 109:19208–19212

    Article  CAS  Google Scholar 

  11. Pustovalov VK, Fritzsche W (2013) Nonlinear dependences of optical properties of spherical core–shell silver–gold and gold–silver nanoparticles on their parameters. Plasmonics 8:983–993

    Article  CAS  Google Scholar 

  12. Sonay AY, Çağlayan AB, Çulha M (2012) Synthesis of peptide mediated Au core–Ag shell nanoparticles as surface-enhanced Raman scattering labels. Plasmonics 7:77–86

    Article  CAS  Google Scholar 

  13. Qian L, Yang X (2005) Preparation and characterization of Ag(Au) bimetallic core–shell nanoparticles with new seed growth method. Colloids Surf A 260:79–85

    Article  CAS  Google Scholar 

  14. Bruzzone S, Malvaldi M, Arrighini GP, Guidotti C (2006) Near-field and far-field scattering by bimetallic nanoshell systems. J Phys Chem B 110:11050–11054

    Article  CAS  Google Scholar 

  15. Xu XB, Yi Z, Li XB, Wang YY, Geng X, Luo JS, Luo BC, Yi YG, Tang YJ (2012) Discrete dipole approximation simulation of the surface plasmon resonance of core/shell nanostructure and the study of resonance cavity effect. J Phys Chem C 116:24046–24053

    Article  CAS  Google Scholar 

  16. Zhu J (2009) Surface plasmon resonance from bimetallic interface in Au–Ag core–shell structure nanowires. Nanoscale Res Lett 4:977–981

    Article  CAS  Google Scholar 

  17. Peña-Rodríguez O, Pal U (2011) Au/Ag core–shell nanoparticles: efficient all-plasmonic Fano-resonance generators. Nanoscale 3:3609

    Article  Google Scholar 

  18. Chen Y, Wu H, Li Z, Wang P, Yang L, Fang Y (2012) The study of surface plasmon in Au/Ag core/shell compound nanoparticles. Plasmonics 7:509–513

    Article  CAS  Google Scholar 

  19. Jiang RB, Chen HJ, Shao L, Li Q, Wang JF (2012) Unraveling the evolution and nature of the plasmons in (Au core)–(Ag shell) nanorods. Adv Mater 24:OP200–OP207

    CAS  Google Scholar 

  20. Zhu J, Zhang F, Li JJ, Zhao JW (2013) The effect of non-homogeneous silver coating on the plasmonic absorption of Au-Ag core-shell nanorod. Gold Bull. Published online doi:10.1007/s13404-013-0111-z

  21. Zhu J, Zhang F, Li JJ, Zhao JW (2013) Optimization of the refractive index plasmonic sensing of gold nanorods by non-uniform silver coating. Sensors Actuators B 183:556–564

    Article  CAS  Google Scholar 

  22. Wu DJ, Xu XD, Liu XJ (2008) Tunable near-infrared optical properties of three-layered metal nanoshells. J Chem Phys 129:074711

    Article  Google Scholar 

  23. Wu DJ, Liu XJ (2010) Optimization of silica–silver–gold layered nanoshell for large near-field enhancement. Appl Phys Lett 96:151912

    Article  Google Scholar 

  24. Peña-Rodríguez O, Pal U (2011) Enhanced plasmonic behavior of bimetallic (Ag–Au) multilayered spheres. Nanoscale Res Lett 6:279

    Article  Google Scholar 

  25. Zhu J, Li JJ, Yuan L, Zhao JW (2012) Optimization of three-layered Au−Ag bimetallic nanoshells for triple-bands surface plasmon resonance. J Phys Chem C 116:11734–11740

    Article  CAS  Google Scholar 

  26. Zhu J (2009) Composition-dependent plasmon shift in Au–Ag alloy nanotubes: effect of local field distribution. J Phys Chem C 113:3164–3167

    Article  CAS  Google Scholar 

  27. Perenboom JAAJ, Wyder P, Meier F (1981) Electronic properties of small metallic particles. Phys Rep 78:173–292

    Article  CAS  Google Scholar 

  28. Averitt RD, Westcott SL, Halas NJ (1999) Linear optical properties of gold nanoshells. J Opt Soc Am B-Opt Phys 16:1824–1832

    Article  CAS  Google Scholar 

  29. Zhu J, Ren YJ, Zhao SM, Zhao JW (2012) The effect of inserted gold nanosphere on the local field enhancement of gold nanoshell. Mater Chem Phys 133:1060–1065

    Article  CAS  Google Scholar 

  30. Zhu J, Li JJ, Zhao JW (2011) Tuning the dipolar plasmon hybridization of multishell metal-dielectric nanostructure: gold nanosphere in a gold nanoshell. Plasmonics 6:527–534

    Article  CAS  Google Scholar 

  31. Haus JW, Zhou HS, Takami S, Hirasawa M, Honma I, Komiyama H (1993) Enhanced optical properties of metal-coated nanoparticles. J Appl Phys 73:1043–1048

    Article  CAS  Google Scholar 

  32. Bardhan R, Mukherjee S, Mirin NA, Levit SD, Nordlander P, Halas NJ (2010) Nanosphere-in-a-nanoshell: a simple nanomatryushka. J Phys Chem C 114:7378–7383

    Article  CAS  Google Scholar 

  33. Hu Y, Fleming RC, Drezek RA (2008) Optical properties of gold-silica-gold multilayer nanoshells. Opt Express 16:19579–19591

    Article  CAS  Google Scholar 

  34. Wu DJ, Liu XJ (2009) Tunable near-infrared optical properties of three-layered gold–silica–gold nanoparticles. Appl Phys B 97:193–197

    Article  CAS  Google Scholar 

  35. Zhu J (2009) Calculation of curvature-dependent surface plasmon resonance in gold nanospheroid and nanoshell. J Nanopart Res 11:785–792

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Program for New Century Excellent Talents in University under grant no. NCET-10-0688, the Fundamental Research Funds for the Central Universities under grant no. 2011jdgz17, and the National Natural Science Foundation of China under grant no. 11174232, 61178075, and 81101122.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Zhu or Jun-wu Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, J., Li, Jj. & Zhao, Jw. The Study of Surface Plasmon Resonance in Au-Ag-Au Three-Layered Bimetallic Nanoshell: The Effect of Separate Ag Layer. Plasmonics 9, 435–441 (2014). https://doi.org/10.1007/s11468-013-9640-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-013-9640-9

Keywords

Navigation