Skip to main content
Log in

Determination of the Optical Thickness of sub 10-nm Thin Metal Films by SPR Experiments

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We discuss the experimental data of surface plasmon resonance (SPR) occurring at the interface between air and single and bimetallic thin layers of Au and Ag prepared on glass substrates. The bilayer configuration allowed for the measurements of the optical constants of metallic films that are ultra thin; e.g., below 10 nm of thickness since SPR modes on such thin films in a single-layer configuration are shallow. We also discuss the effect of film thickness on SPR coupling. Thickness and refractive index of the films were determined by matching experimental SPR curves to the theoretical ones. Thickness and roughness of the films were also measured by atomic force microscopy. The results obtained by experimental measurements are in good agreement with AFM analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Goyer C, Labbe P (2011) Synthesis and biological applications of glycoconjugates. Bentham Science University of Grenoble, France, pp 255–266

    Google Scholar 

  2. Schasfoort RBM, Tudos AJ (eds) (2008) Handbook of surface plasmon resonance. Royal Society of Chemistry, Cambridge

    Google Scholar 

  3. Ou S, Kwok CK (2004) Ferulic acid: pharmaceutical functions, preparation and application in foods. J Sci Food Agric 84:1261–1269

    Article  CAS  Google Scholar 

  4. Zhai P, Guo J, Xiang J, Zhou F (2007) Electrochemical surface plasmon resonance spectroscopy at Bilayered Silver/Gold Films. J Phys Chem C 111:981–986

    Article  CAS  Google Scholar 

  5. Shan XN, Foley KJ, Zhang PM et al (2010) Measuring surface charge density and particle height using surface plasmon resonance technique. J Anal Chem 82:234–240

    Article  CAS  Google Scholar 

  6. Sarid D (1981) Long-range surface plasma waves on very thin metal films. Phys Rev Lett 47:1927

    Article  CAS  Google Scholar 

  7. Balci S, Kocabas C, Ates S, Karademir E, Salihoglu O et al (2012) Tuning surface plasmon-exciton coupling via thickness dependent plasmon damping. Phys Rev B 86:235402

    Article  Google Scholar 

  8. Balci S, Kocabas C, Aydinli A (2011) Critical coupling in plasmonic resonator arrays. Opt Lett 36:2770–2772

    Article  Google Scholar 

  9. Wook-Jae L, Jae-Eun K (2008) Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths. J Appl Phys 103:0737131–0737135. doi:10.1063/1.2902395

    Google Scholar 

  10. Kretschmann E (1971) Determination of optical constants of metals through the stimulation of surface plasma oscillations. Z Phys 241:313–324

    Article  CAS  Google Scholar 

  11. Innes RA, Sambles JR (1987) Optical characterisation of gold using surface plasmon-polaritons. J Phys F Met Phys 17:277

    Article  CAS  Google Scholar 

  12. Heavens OS (1960) Optical properties of thin films. Rep Prog Phys 23:1–65

    Article  Google Scholar 

  13. Manwen Y, Ooi-Kiang T (2008) Effects of intermediate dielectric films on multilayer surface plasmon resonance behavior. Acta Biomater 4:2016–2027

    Article  Google Scholar 

  14. Van Gent J, Lambeck PV, Kreuwel HJM et al (1990) Optimization of a chemooptical surface plasmon resonance based sensor. Appl Opt 29:2843–2849

    Article  Google Scholar 

  15. Brink G, Sigl H, Sackmann E (1995) Near-infrared surface plasmon resonance in silicon-based sensor: new opportunities in sensitive detection of biomolecules from aqueous solutions by applying microstep for discriminating specific and non-specific binding. Sensor Actuator B 25:756–761

    Article  CAS  Google Scholar 

  16. Huang Y, Ye H-A (2013) The determination of the thickness and the optical dispersion property of gold film using spectroscopy of a surface plasmon in the frequency domain. Chin Phys B 22:027301. doi:10.1088/1674-1056/22/2/027301

    Article  Google Scholar 

  17. Yano M, Fukui M, Haragichi M, Shintani Y (1990) In situ and real-time observation of optical constants of metal films during growth. Surf Sci 227:129–137

    Article  CAS  Google Scholar 

  18. Gadenne P, Vuye G (1997) In situ determination of the optical and electrical properties of thin films during their deposition. J Phys E Sci Inst 10:733–736

    Article  Google Scholar 

  19. Reale C (1970) Optical constants of vacuum deposited thin metal films in the near infrared. Infrared Phys 10:173–181

    Article  CAS  Google Scholar 

  20. Nesterenko DV, Saif Ur R, Sekkat Z (2012) Surface plasmon sensing with different metals in single and double layer configurations. Appl Opt 51(27):6673–6682

    Article  CAS  Google Scholar 

  21. Nesterenko DV, Sekkat Z (2013) Resolution estimation of the Au, Ag, Cu, and Al single- and double-layer surface plasmon sensors in the ultraviolet, visible, and infrared regions. Plasmonics. doi:10.1007/s11468-013-9575-1

    Google Scholar 

  22. Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings. Springer Verlag, Berlin

    Google Scholar 

  23. Li L (1996) Use of Fourier series in the analysis of discontinuous periodic structures. J Opt Soc Am A 13(9):1870–1876

    Article  Google Scholar 

  24. Taflove A, Hagness SC (2005) Computational electrodynamics: the finite-difference time-domain method. Artech House, Boston

    Google Scholar 

  25. Jin JM (1993) The finite element method in electromagnetics. Wiley, New York

    Google Scholar 

  26. Nesterenko DV (2011) Modeling of diffraction of electromagnetic waves on periodic inhomogeneities by a finite element method coupled with the Rayleigh expansion. Optoelectron Instrum Data Process 47(1):68–75

    Article  Google Scholar 

  27. Pan Meng (2010) Using multiple layers and surface roughness control for improving the sensitivity of SRP sensors. Dissertation, University of Birmingham

  28. Cardona M (1971) Fresnel reflection and surface plasmon. Am J Phys 39:1277

    Article  Google Scholar 

  29. Palik ED (ed) (1985) Handbook of optical constants of solids. Academic, Orlando

    Google Scholar 

  30. Ekgasit S, Yu F, Knoll W (2005) Fluorescence intensity in surface plasmon field-enhanced fluorescence spectroscopy. Sensors Actuators B Chem 104(2):294

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zouheir Sekkat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rehman, Su., Rahmouni, A., Mahfoud, T. et al. Determination of the Optical Thickness of sub 10-nm Thin Metal Films by SPR Experiments. Plasmonics 9, 381–387 (2014). https://doi.org/10.1007/s11468-013-9635-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-013-9635-6

Keywords

Navigation