Skip to main content
Log in

Full-Wave Analytical Solution of Second-Harmonic Generation in Metal Nanospheres

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We present a full-wave analytical solution for the problem of second-harmonic generation from spherical nanoparticles. The sources of the second-harmonic radiation are represented through an effective nonlinear polarization. The solution is derived in the framework of the Mie theory by expanding the pump field, the nonlinear sources, and the second-harmonic fields in series of spherical vector wave functions. We use the proposed solution for studying the second-harmonic radiation generated from gold nanospheres as a function of the pump wavelength and the particle size, in the framework of the Rudnick–Stern model. We demonstrate the importance of high-order multipolar contributions to the second-harmonic radiated power. Moreover, we investigate the dependence of the p- and s-components of the second-harmonic radiation on the Rudnick–Stern parameters. This approach provides a rigorous methodology to understand second-order optical processes in nanostructured metals and to design novel nanoplasmonic devices in the nonlinear regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Aouani H, Navarro-Cia M, Rahmani M, Sidiropoulos TPH, Hong M, Oulton RF, Maier SA (2012) Nano Lett 12(9):4997

    Article  CAS  Google Scholar 

  2. Butet J, Duboisset J, Bachelier G, Russier-Antoine I, Benichou E, Jonin C, Brevet PF (2010) Nano Lett 10(5):1717

    Article  CAS  Google Scholar 

  3. Capretti A, Walsh GF, Minissale S, Trevino J, Forestiere C, Miano G, Negro LD (2012) Opt Express 20(14):15797

    Article  CAS  Google Scholar 

  4. Kauranen M, Zayats AV (2012) Nat Photonics 6:737

    Article  CAS  Google Scholar 

  5. Tong L, Cheng J (2011) Mater Today 14(6):264

    Article  CAS  Google Scholar 

  6. Gonella G, Dai HL (2011) Phys Rev B 84:121402

    Article  Google Scholar 

  7. Heinz T (1991) Nonlinear surface electromagnetic phenomena. In: Ponath H, Stegeman G (eds) Modern problems in condensed matter sciences. North-Holland, Amsterdam, pp 353–416

    Google Scholar 

  8. Agarwal G, Jha S (1982) Solid State Commun 41(6):499

    Article  CAS  Google Scholar 

  9. Dadap JI, Shan J, Eisenthal KB, Heinz TF (1999) Phys Rev Lett 83:4045

    Article  CAS  Google Scholar 

  10. Guyot-Sionnest P, Chen W, Shen YR (1986) Phys Rev B 33:8254

    Article  Google Scholar 

  11. Guyot-Sionnest P, Shen YR (1987) Phys Rev B 35:4420

    Article  CAS  Google Scholar 

  12. Benedetti A, Centini M, Bertolotti M, Sibilia C (2011) Opt Express 19(27):26752

    Article  Google Scholar 

  13. Ciraci C, Poutrina E, Scalora M, Smith DR (2012) Phys Rev B 86:115451

    Article  Google Scholar 

  14. Scalora M, Vincenti MA, de Ceglia D, Roppo V, Centini M, Akozbek N, Bloemer MJ (2010) Phys Rev A 82:043828

    Article  Google Scholar 

  15. Zeng Y, Hoyer W, Liu J, Koch SW, Moloney JV (2009) Phys Rev B 79:235109

    Article  Google Scholar 

  16. Kujala S, Canfield BK, Kauranen M, Svirko Y, Turunen J (2007) Phys Rev Lett 98:167403

    Article  Google Scholar 

  17. Husu H, Siikanen R, Mäkitalo J, Lehtolahti J, Laukkanen J, Kuittinen M, Kauranen M (2012) Nano Lett 12(2):673

    Article  CAS  Google Scholar 

  18. Brudny VL, Mendoza BS, Mochan WL (2000) Phys Rev B 62:11152

    Article  CAS  Google Scholar 

  19. Dadap JI, Shan J, Heinz TF (2004) Opt J Soc Am B 21(7):1328

    Article  CAS  Google Scholar 

  20. Pavlyukh Y, Hübner W (2004) Phys Rev B 70:245434

    Article  Google Scholar 

  21. de Beer AGF, Roke S (2009) Phys Rev B 79:155420

    Article  Google Scholar 

  22. Biris CG, Panoiu NC (2010) Phys Rev B 81:195102

    Article  Google Scholar 

  23. Xu J, Zhang X (2012) Opt Express 20(2):1668

    Article  Google Scholar 

  24. Bloembergen N, Chang RK, Jha SS, Lee CH (1968) Phys Rev 174:813

    Article  CAS  Google Scholar 

  25. Sipe JE, So VCY, Fukui M, Stegeman GI (1980) Phys Rev B 21:4389

    Article  CAS  Google Scholar 

  26. Sipe JE, Mizrahi V, Stegeman GI (1987) Phys Rev B 35:9091

    Article  Google Scholar 

  27. Wang FX, Rodriguez FJ, Albers WM, Ahorinta R, Sipe JE, Kauranen M (2009) Phys Rev B 80:233402

    Article  Google Scholar 

  28. Bachelier G, Butet J, Russier-Antoine I, Jonin C, Benichou E, Brevet PF (2010) Phys Rev B 82:235403

    Article  Google Scholar 

  29. Ciraci C, Poutrina E, Scalora M, Smith DR (2012) Phys Rev B 85:201403

    Article  Google Scholar 

  30. Centini M, Benedetti A, Scalora M, Sibilia C, Bertolotti M (2009) In: Proc. SPIE 7354, Nonlinear optics and applications III

  31. Rudnick J, Stern EA (1971) Phys Rev B 4:4274

    Article  Google Scholar 

  32. Jackson J (1998) Classical electrodynamics. Wiley, Hoboken

    Google Scholar 

  33. Varshalovich D, Moskalev A, Khersonski V (1988) Quantum theory of angular momentum: irreducible tensors, spherical harmonics, vector coupling coefficients, 3nj symbols. World Scientific, Singapore

    Book  Google Scholar 

  34. Van Bladel J (2007) Electromagnetic fields. IEEE press series on electromagnetic wave theory. Wiley, New York

    Google Scholar 

  35. Van Bladel J (1961) IRE Trans Antennas Propag 9(6):563

    Article  Google Scholar 

  36. Forestiere C, Capretti A, Miano G (2013) Surface integral method for second harmonic generation in metal nanoparticles including both local-surface and nonlocal-bulk sources. J Opt Soc Am B 30(9):2355–2364

    Article  CAS  Google Scholar 

  37. Johnson PB, Christy RW (1972) Phys Rev B 6:4370

    Article  CAS  Google Scholar 

  38. Gonella G, Gan W, Xu B, Dai HL (2012) J Phys Chem Lett 3(19):2877

    Article  CAS  Google Scholar 

  39. Almeida R, Barrios C, Panepucci R, Lipson M (2004) Nature 431:1081

    Article  CAS  Google Scholar 

  40. Butet J, Bachelier G, Russier-Antoine I, Jonin C, Benichou E, Brevet P-F (2010) Interference between selected dipoles and octupoles in the optical second-harmonic generation from spherical gold nanoparticles. Phys Rev Lett 105(7):077401

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the Italian Miur through the project PON01-02782. L.D.N. acknowledges the support of the NSF Career Award No. ECCS-0846651.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Miano.

Appendices

A Vector Spherical Harmonics

The vector spherical harmonics X mn are [32, 33] as follows:

$$\begin{array}{@{}rcl@{}} {\mathbf{X}_{mn}}( {\theta ,\phi } ) &=& i\frac{1}{{\sqrt {n( {n + 1} )} }}\sqrt {\frac{{2n + 1}}{{4\pi }}\frac{{( {n - m} )!}}{{( {n + m} )!}}} \\ &&\cdot \left[ {i{\pi_{mn}}( {\cos \theta } )\hat \theta - {\tau_{mn}}( {\cos \theta } )\hat \phi } \right]{e^{im\phi }}\;, \end{array} $$

where

$$\begin{array}{lll} {\pi_{mn}}( {\cos \theta } ) &=& \frac{m}{{\sin \theta }}P_{n}^{m}( {\cos \theta } )\\ {\tau_{mn}}( {\cos \theta } ) &=& \frac{d}{{d\theta }}P_{n}^{m}( {\cos \theta } ), \end{array} $$

and \(P_{n}^{m} = P_{n}^{m}( u )\) is the associated Legendre function of the first kind and of degree n and m.

B Calculation of \(\left \{{p_{mn}^{( \omega )},q_{mn}^{( \omega )}}\right \}\)

The expansion coefficients in Eq. 10a, for a linearly polarized plane wave propagating along the z − axis with the electric field parallel to the x − axis (Fig. 1a), are

$$\begin{array}{@{}rcl@{}} p_{mn}^{( \omega )} &=& q_{mn}^{( \omega )} = 0 \mathrm{,\; for}\, | m | \ne 1\\ p_{1n}^{( \omega )} &=& q_{1n}^{( \omega )} = -p_{-1n}^{( \omega )} = q_{-1n}^{( \omega )} = \frac{1}{2}{{(-i)}^{n}}\sqrt{{4\pi(2n + 1)}}. \end{array} $$

C Calculation of \(\left \{ {a_{mn}^{( \omega )},b_{mn}^{( \omega )}},{c_{mn}^{( \omega )},d_{mn}^{( \omega )}} \right \}\)

The coefficients \(\left \{ {a_{mn}^{( \omega )},b_{mn}^{( \omega )}},{c_{mn}^{( \omega )},d_{mn}^{( \omega )}} \right \}\) are expressed as

$$\begin{array}{@{}rcl@{}} {{a_{mn}^{(\omega )}}} &=& {{a_{n}^{(\omega )}}} {{p_{mn}^{(\omega )}}},\quad {{b_{mn}^{(\omega )}}} = {{b_{n}^{(\omega )}}} {{q_{mn}^{(\omega )}}},\\ {{c_{mn}^{(\omega )}}} &=& {{c_{n}^{(\omega )}}} {{q_{mn}^{(\omega )}}},\quad {{d_{mn}^{(\omega )}}} = {{d_{n}^{(\omega )}}} {{p_{mn}^{(\omega )}}}, \end{array} $$

where

$$\begin{array}{@{}rcl@{}} {{a_{n}^{(\omega )}}} {}&=&{} \frac {{\frac{{{\zeta_{e}}}}{{{\zeta_{i}}(\omega )}}\;{\psi_{n}}\left(x_{i}^{(\omega )}\right)\;{{\dot \psi }_{n}}\left(x_{e}^{(\omega )}\right) {}-{} \;{\psi_{n}}\left(x_{e}^{(\omega )}\right)\;{{\dot \psi }_{n}}\left(x_{i}^{(\omega )}\right)}} {{\frac{{{\zeta_{e}}}}{{{\zeta_{i}}(\omega )}}\;{\psi_{n}}\left(x_{i}^{(\omega )}\right)\;{{\dot \xi }_{n}}\left(x_{e}^{(\omega )}\right) {}-{} \;{\xi_{n}}\left(x_{e}^{(\omega )}\right)\;{{\dot \psi }_{n}}\left(x_{i}^{(\omega )}\right)}},\\ {{b_{n}^{(\omega )}}} {}&=&{} \frac {\frac{{{\zeta_{e}}}}{{{\zeta_{i}}(\omega )}}\;{\psi_{n}}\left(x_{e}^{(\omega )}\right)\;{{\dot \psi }_{n}}\left(x_{i}^{(\omega )}\right) {}-{} {\psi_{n}}\left(x_{i}^{(\omega )}\right)\;{{\dot \psi }_{n}}\left(x_{e}^{(\omega )}\right)} {\frac{{{\zeta_{e}}}}{{{\zeta_{i}}(\omega )}}\;{\xi_{n}}\left(x_{e}^{(\omega )}\right)\;{{\dot \psi }_{n}}\left(x_{i}^{(\omega )}\right) - {\psi_{n}}\left(x_{i}^{(\omega )}\right)\;{{\dot \xi }_{n}}\left(x_{e}^{(\omega )}\right)},\\ {{c_{n}^{(\omega )}}} &=& \frac {-i\frac{{{k_{i}}(\omega )}}{{{k_{e}}(\omega )}}} {\frac{{{\zeta_{e}}}}{{{\zeta_{i}}(\omega )}}\;{\xi_{n}}\left(x_{e}^{(\omega )}\right)\;{{\dot \psi }_{n}}\left(x_{i}^{(\omega )}\right) {}-{} \;{\psi_{n}}\left(x_{i}^{(\omega )}\right)\;{{\dot \xi }_{n}}\left(x_{e}^{(\omega )}\right)},\\ {{d_{n}^{(\omega )}}} &=& \frac {{i\frac{{{k_{i}}(\omega )}}{{{k_{e}}(\omega )}}}} {{\frac{{{\zeta_{e}}}}{{{\zeta_{i}}(\omega )}}\;{\psi_{n}}\left(x_{i}^{(\omega )}\right)\;{{\dot \xi }_{n}}\left(x_{e}^{(\omega )}\right) {}-{} \;{\xi_{n}}\left(x_{e}^{(\omega )}\right)\;{{\dot \psi }_{n}}\left(x_{i}^{(\omega )}\right)}}, \end{array} $$

\(x_{e}^{(\omega )} = k_{e}^{(\omega )}R,\;\;x_{i}^{(\omega )} = k_{i}^{(\omega )}\) and \({\psi _{n}} = {\psi _{n}}( \rho )\;\), \({\xi _{n}} = {\xi _{n}}( \rho )\) are the Riccati–Bessel functions defined as \({\psi _{n}}(\rho ) = \rho \;{j_{n}}(\rho ),\;\;\;{\xi _{n}} = \rho \;h_{n}^{(1)}(\rho )\). \(\dot \zeta \) denotes the first derivative of ζ = ζ(ρ) with respect to ρ.

D Selvedge Region

The selvedge region (Fig. 1b) is a layer of infinitesimal depth \(\delta \) at the interface metal–vacuum. In this region, there is a volumetric current density \(\mathbf {J}_{\perp }^{( {2\omega } )} = i2\omega \left ( {\mathbf {P}_{s}^{\left ( {2\omega } \right )} \cdot \hat {\mathbf {n}}/\delta } \right )\hat {\mathbf {n}}\), which is exactly compensated by the normal component of the displacement current density, \(\mathbf {J}_{\perp }^{( {2\omega } )} + i2\omega \mathbf {D}_ \perp ^{( {2\omega } )} = {\bf {0}}\); otherwise, there would be an unbounded magnetic field. Therefore, in the selvedge region, \(\mathbf {D}_ \perp ^{( {2\omega } )} = - \left ( {\mathbf {P}_{s}^{\left ( {2\omega } \right )} \cdot \hat {\mathbf {n}}/\delta } \right )\hat {\mathbf {n}}\). From the Faraday–Neumann law, applied to the elementary curve \(\Delta l\) shown in Fig. 1b, we have \(\left ({\mathbf {E}_{i}^{\left ({2\omega } \right )} - \mathbf {E}_{e}^{({2\omega })}}\right )\Big |_{\Sigma } \cdot \Delta {l_{\parallel }} = {u_{2}} - {u_{1}}\), where \({u_{(\alpha )}} = \int _{\Delta l_{\perp }^{(\alpha )}}{\mathbf {E}^{( {2\omega } )}}\cdot {d{ l}} = \left . ({\mathbf {P}_{s}^{( {2\omega } )} \cdot \hat {\mathbf {n}}})/\varepsilon '\right |_{Q^{(\alpha )}}\) and α = 1, 2. By combining these relations, we obtain the equations \(\hat {\mathbf {n}} \times \left . \left ( {\mathbf {E}_{i}^{\left ( {2\omega } \right )} - \mathbf {E}_{e}^{( {2\omega } )}} \right )\right | {_{\Sigma }} = \hat {\mathbf {n}} \times {\nabla _{s}}\left ( {\mathbf {P}_{s}^{\left ( {2\omega } \right )} \cdot \hat {\mathbf {n}}} \right )/\varepsilon '\).

E Calculation of\(\left \{ {a_{mn}^{( {2\omega } )},b_{mn}^{( {2\omega } )}},{c_{mn}^{( {2\omega } )},d_{mn}^{( {2\omega } )}} \right \}\)

The coefficients \(\left \{{a_{mn}^{( {2\omega } )},b_{mn}^{( {2\omega } )}},c_{mn}^{( {2\omega } )},d_{mn}^{( {2\omega })} \right \}\) are given by

$$\begin{array}{@{}rcl@{}} a_{mn}^{( {2\omega } )} = {a' }_{n}^{( {2\omega } )} {u' }_{mn}^{( {2\omega } )} + {a^{\prime\prime}}_{n}^{( {2\omega } )} {u^{\prime\prime}}_{mn}^{( {2\omega } )}, \\ b_{mn}^{( {2\omega } )} = {b' }_{n}^{({2\omega } )} {v' }_{mn}^{( {2\omega } )} + {b^{\prime\prime}}_{n}^{( {2\omega } )} {v^{\prime\prime}}_{mn}^{( {2\omega } )}, \\ c_{mn}^{( {2\omega } )} = {c' }_{n}^{({2\omega } )} {v' }_{mn}^{( {2\omega } )} + {c^{\prime\prime}}_{n}^{( {2\omega } )} {v^{\prime\prime}}_{mn}^{( {2\omega } )}, \\ d_{mn}^{( {2\omega } )} = {d' }_{n}^{({2\omega } )} {u' }_{mn}^{( {2\omega } )} + {d^{\prime\prime}}_{n}^{( {2\omega } )} {u^{\prime\prime}}_{mn}^{( {2\omega } )}, \end{array} $$

where the coefficients \(\left \{ {{u'}_{mn}^{(2\omega )},{v'}_{mn}^{(2\omega )}} \right \}\) and \(\left \{ {{u^{\prime \prime }}_{mn}^{(2\omega )},{v^{\prime \prime }}_{mn}^{(2\omega )}} \right \}\) are given in Appendix F.

We denote with one apex the contribution due to the tangential surface SH sources and with two apices the contributions of both the normal surface SH sources and the γ bulk SH sources.

For the tangential surface SH sources, we have

$$\begin{array}{@{}rcl@{}} {{{a'}_{n}^{(2\omega )}}} = \frac {-x_{e}^{(2\omega )} {{\dot \psi }_{n}}\left(x_{i}^{(2\omega )}\right)} {\frac{{{\zeta_{e}}}}{{{\zeta_{i}}(2\omega )}}{\psi_{n}}\left(x_{i}^{(2\omega )}\right) {{\dot \xi }_{n}}\left(x_{e}^{(2\omega )}\right) - {\xi_{n}}\left(x_{e}^{(2\omega )}\right) {{\dot \psi }_{n}}\left(x_{i}^{(2\omega )}\right)},\\ {{{b'}_{n}^{(2\omega )}}} = \frac {{-x_{e}^{(2\omega )} {\psi_{n}}\left(x_{i}^{(2\omega )}\right)}} {\frac{{{\zeta_{e}}}}{{{\zeta_{i}}(2\omega )}}{\xi_{n}}\left(x_{e}^{(2\omega )}\right) {{\dot \psi }_{n}}\left(x_{i}^{(2\omega )}\right) - {\psi_{n}}\left(x_{i}^{(2\omega )}\right) {{\dot \xi }_{n}}\left(x_{e}^{(2\omega )}\right)},\\ {{{c'}_{n}^{(2\omega )}}} = \frac {x_{i}^{(2\omega )} {\xi_{n}}\left(x_{e}^{(2\omega )}\right)} {\frac{{{\zeta_{e}}}}{{{\zeta_{i}}(2\omega )}}{\xi_{n}}(x_{e}^{(2\omega )}) {{\dot \psi }_{n}}\left(x_{i}^{(2\omega )}\right) - {\psi_{n}}\left(x_{i}^{(2\omega )}\right) {{\dot \xi }_{n}}\left(x_{e}^{(2\omega )}\right)},\\ {{{d'}_{n}^{(2\omega )}}} = \frac {{x_{i}^{(2\omega )} {{\dot \xi }_{n}}\left(x_{e}^{(2\omega )}\right)}} {\frac{{{\zeta_{e}}}}{{{\zeta_{i}}(2\omega )}}{\psi_{n}}\left(x_{i}^{(2\omega )}\right) {{\dot \xi }_{n}}\left(x_{e}^{(2\omega )}\right) - {\xi_{n}}\left(x_{e}^{(2\omega )}\right) {{\dot \psi }_{n}}\left(x_{i}^{(2\omega )}\right)}, \end{array} $$

and for the contribution of both the normal surface SH sources and the γ bulk SH sources, we have

$$\begin{array}{@{}rcl@{}} {{{a^{\prime\prime}}_{n}^{(2\omega )}}} = \frac {\frac{{{\zeta_{e}}}}{{{\zeta_{i}}(2\omega )}}x_{e}^{(2\omega )} {\psi_{n}}\left(x_{i}^{(2\omega )}\right)} {\frac{{{\zeta_{e}}}}{{{\zeta_{i}}(2\omega )}}{\psi_{n}}\left(x_{i}^{(2\omega )}\right) {{\dot \xi }_{n}}\left(x_{e}^{(2\omega )}\right) - {\xi_{n}}\left(x_{e}^{(2\omega )}\right) {{\dot \psi }_{n}}\left(x_{i}^{(2\omega )}\right)},\\ {{{b^{\prime\prime}}_{n}^{(2\omega )}}} = \frac {\frac{{{\zeta_{e}}}}{{{\zeta_{i}}(2\omega )}}x_{e}^{(2\omega )} {\dot \psi_{n}}\left(x_{i}^{(2\omega )}\right)} {\frac{{{\zeta_{e}}}}{{{\zeta_{i}}(2\omega )}}{\xi_{n}}\left(x_{e}^{(2\omega )}\right) {{\dot \psi }_{n}}\left(x_{i}^{(2\omega )}\right) - {\psi_{n}}\left(x_{i}^{(2\omega )}\right) {{\dot \xi }_{n}}\left(x_{e}^{(2\omega )}\right)},\\ {{{c^{\prime\prime}}_{n}^{(2\omega )}}} = \frac {-x_{i}^{(2\omega )} {\dot \xi_{n}}(x_{e}^{(2\omega )})} {\frac{{{\zeta_{e}}}}{{{\zeta_{i}}(2\omega )}}{\xi_{n}}\left(x_{e}^{(2\omega )}\right) {{\dot \psi }_{n}}\left(x_{i}^{(2\omega )}\right) - {\psi_{n}}\left(x_{i}^{(2\omega )}\right) {{\dot \xi }_{n}}\left(x_{e}^{(2\omega )}\right)},\\ {{{d^{\prime\prime}}_{n}^{(2\omega )}}} = \frac {-x_{i}^{(2\omega )} {\xi_{n}}\left(x_{e}^{(2\omega )}\right)} {\frac{{{\zeta_{e}}}}{{{\zeta_{i}}(2\omega )}}{\psi_{n}}\left(x_{i}^{(2\omega )}\right) {{\dot \xi }_{n}}\left(x_{e}^{(2\omega )}\right) - {\xi_{n}}\left(x_{e}^{(2\omega )}\right) {{\dot \psi }_{n}}\left(x_{i}^{(2\omega )}\right)}, \end{array} $$

where \(x_{e}^{(2\omega )} = k_{e}^{(2\omega )}R,\;\;x_{i}^{(2\omega )} = k_{i}^{(2\omega )}R,\) \({\psi _{n}} = {\psi _{n}}( \rho ),\) and ξ n = ξ n (ρ) are the Riccati–Bessel functions.

F Calculation of \(\left \{ {{u'}_{mn}^{(2\omega )},{v'}_{mn}^{(2\omega )}} \right \},\left \{ {{u^{\prime \prime }}_{mn}^{(2\omega )},{v^{\prime \prime }}_{mn}^{(2\omega )}} \right \}\)

The coefficients \(\left \{ {{u'}_{mn}^{(2\omega )},{v'}_{mn}^{(2\omega )}} \right \}\) for the surface tangential source can be expressed as

$$\begin{array}{@{}rcl@{}} {u'}_{mn}^{(2\omega )} &=& i 2 \left( \frac{\chi_{\parallel\perp\parallel}}{\chi^{(2)}_{0}} \right) \frac{\zeta_{e}}{\zeta_{0}} \sum\limits_{{n_{1}}}^{\infty} \sum\limits_{{m_{1}} = - {n_{1}}}^{{n_{1}}} \sum\limits_{{n_{2}}}^{\infty} \sum\limits_{{m_{2}} = - {n_{2}}}^{n_{2}}\\ &&\times \left[A_{{m_{1}}{n_{1}}}^{(1)}A_{{m_{2}}{n_{2}}}^{( - 1)}C_{{n_{1}}{m_{1}}{n_{2}}{m_{2}}nm}^{(1,0, - 1)}\right.\\ &&\left.\quad\; + A_{{m_{1}}{n_{1}}}^{(0)}A_{{m_{2}}{n_{2}}}^{( - 1)}C_{{n_{1}}{m_{1}}{n_{2}}{m_{2}}nm}^{(1,1, - 1)}\right] \\[3.5pt] {v'}_{mn}^{(2\omega )} &=& 2 \left( \frac{\chi_{\parallel \perp \parallel}}{\chi_{0}^{(2)}} \right) \frac{{{\zeta_{e}}}}{\zeta_{0}}\sum\limits_{{n_{1}}}^{\infty} \sum\limits_{{m_{1}} = - {n_{1}}}^{n_{1}} \sum\limits_{{n_{2}}}^{\infty} \sum\limits_{{m_{2}} = - {n_{2}}}^{{n_{2}}}\\ &&\times \left[A_{{m_{1}}{n_{1}}}^{(1)}A_{{m_{2}}{n_{2}}}^{( - 1)}C_{{n_{1}}{m_{1}}{n_{2}}{m_{2}}nm}^{(0,0, - 1)}\right.\\ && \left.\quad\;+ A_{{m_{1}}{n_{1}}}^{(0)}A_{{m_{2}}{n_{2}}}^{( - 1)}C_{{n_{1}}{m_{1}}{n_{2}}{m_{2}}nm}^{(0,1, - 1)}\right] \end{array} $$

and the coefficients \(\left \{ {{u^{\prime \prime }}_{mn}^{(2\omega )},{v^{\prime \prime }}_{mn}^{(2\omega )}} \right \}\) for both the γ bulk and the surface normal polarization source can be expressed as

$$\begin{array}{@{}rcl@{}} {u^{\prime\prime}}_{mn}^{(2\omega )} &=&\left( \frac{\chi_{\perp \perp \perp}}{\chi^{(2)}_{0}} \right) \frac{i \sqrt {n(n + 1)}}{{k_{0}}(\omega )R} \sum\limits_{{n_{1}}}^{\infty} \sum\limits_{{m_{1}} = - {n_{1}}}^{{n_{1}}} \sum\limits_{{n_{2}}}^{\infty} \sum\limits_{{m_{2}} = - {n_{2}}}^{{n_{2}}} A_{{m_{1}}{n_{1}}}^{(-1)}A_{{m_{2}}{n_{2}}}^{(-1)} W_{{n_{1}}{m_{1}}{n_{2}}{m_{2}}nm}^{(-1,-1)}\\ &&+\left( \frac{\gamma}{\chi^{(2)}_{0}} \frac{{{{\varepsilon}_{0}}}}{{{{\varepsilon}_{i}}(2\omega )}} \right) \frac{i\sqrt {n(n + 1)}}{{{k_{0}}(\omega )}R} \sum\limits_{{n_{1}}}^{\infty} \sum\limits_{{m_{1}} = - {n_{1}}}^{{n_{1}}} \sum\limits_{{n_{2}}}^{\infty} \sum\limits_{{m_{2}} = - {n_{2}}}^{{n_{2}}}{} \left[ A_{{m_{1}}{n_{1}}}^{(1)} A_{{m_{2}}{n_{2}}}^{(1)} W_{{n_{1}}{m_{1}}{n_{2}}{m_{2}}nm}^{(1,1)} + A_{{m_{1}}{n_{1}}}^{(0)} A_{{m_{2}}{n_{2}}}^{(0)} W_{{n_{1}}{m_{1}}{n_{2}}{m_{2}}nm}^{(0,0)}\right.\\ &&{\kern18.5pc} + A_{{m_{1}}{n_{1}}}^{(1)} A_{{m_{2}}{n_{2}}}^{(0)} W_{{n_{1}}{m_{1}}{n_{2}}{m_{2}}nm}^{(1,0)} + A_{{m_{1}}{n_{1}}}^{(0)} A_{{m_{2}}{n_{2}}}^{(1)} W_{{n_{1}}{m_{1}}{n_{2}}{m_{2}}nm}^{(0,1)}\\ &&{\kern18.5pc}\left.+ A_{{m_{1}}{n_{1}}}^{(-1)} A_{{m_{2}}{n_{2}}}^{(-1)} W_{{n_{1}}{m_{1}}{n_{2}}{m_{2}}nm}^{(-1,-1)} \right]\\ {v^{\prime\prime}}_{mn}^{(2\omega )} &=& 0\\ \end{array} $$

where

$$\begin{array}{@{}rcl@{}} A_{mn}^{( 0)}{} ={} c_{mn}^{(\omega )}{\left. {{j_{n}}({k_{i}}(\omega )r)} \right|_{r = R}}; A_{mn}^{( 1)} {}={} d_{mn}^{(\omega )}{\left. {i\frac{1}{{{k_{i}}(\omega )}}\left( {\frac{\partial }{{\partial r}} {}+{} \frac{1}{r}} \right){j_{n}}( {{k_{i}}(\omega )r} )} \right|_{r = R}}; A_{mn}^{(-1)} {}={} d_{mn}^{(\omega )}{\left. {i\sqrt {n(n + 1)} \frac{1}{{{k_{i}}(\omega )r}}{j_{n}}( {{k_{i}}(\omega )r} )} \right|_{r = R}} \end{array} $$
$$\begin{array}{@{}rcl@{}} &&{} C_{J_{1} M_{1} J_{2} M_{2} J M}^{(1,0,-1)} = \sqrt{\frac{3}{2 \pi}} (2 J_{1}+1) C_{J_{1} M_{1} J_{2} M_{2}}^{J M} \cdot \left[ \sqrt{(J_{2})(2 J_{2}-1)}\left\{ \begin{array}{lll} J_{1} & J_{1} & 1 \\ J_{2} & J_{2}-1 & 1 \\ J & J+1 & 1 \end{array} \right\} C_{(J_{1})(0)(J_{2}-1)(0)}^{(J+1)0} \sqrt{\frac{J}{2J+1}} \right. \\ && {\kern15pc} \left. -\sqrt{(J_{2}+1)(2 J_{2}+3)}~ \left\{ \begin{array}{lll} J_{1} & J_{1} & 1 \\ J_{2} & J_{2}+1 & 1 \\ J & J+1 & 1 \end{array} \right\} C^{(J+1) 0}_{(J_{1})(0)(J_{2}+1)(0)} \sqrt{\frac{J}{2J+1}} \right. \\&& {\kern15pc} \left.+\sqrt{(J_{2})(2 J_{2}-1)} \left\{ \begin{array}{lll} J_{1} & J_{1} & 1 \\ J_{2} & J_{2}-1 & 1 \\ J & J-1 & 1 \end{array} \right\} C^{(J-1) 0}_{(J_{1})(0)(J_{2}-1)(0)} \sqrt{\frac{J+1}{2J+1}} \right. \\&& {\kern15pc} \left.-\sqrt{(J_{2}+1)(2 J_{2}+3)}~ \left\{ \begin{array}{lll} J_{1} & J_{1} & 1 \\ J_{2} & J_{2}+1 & 1 \\ J & J-1 & 1 \end{array} \right\} C_{(J_{1})(0)(J_{2}+1)(0)}^{(J-1) 0} \sqrt{\frac{J+1}{2J+1}} \right] \end{array} $$
$$\begin{array}{@{}rcl@{}}&&C_{J_{1} M_{1} J_{2} M_{2} J M}^{(1,1,-1)} = \sqrt{\frac{3}{2 \pi}} C_{J_{1} M_{1} J_{2} M_{2}}^{J M} \cdot \left[ \sqrt{(J_{1}+1)(J_{2})(2 J_{1}-1)(2 J_{2}-1)} \left\{ \begin{array}{lll} J_{1} & J_{1}-1 & 1 \\ J_{2} & J_{2}-1 & 1 \\ J & J+1 & 1 \end{array} \right\} C_{(J_{1}-1)(0)(J_{2}-1)(0)}^{(J+1) 0} \sqrt{\frac{J}{2J+1}} \right.\\ && {\kern12pc} - \sqrt{(J_{1}+1)(J_{2}+1)(2 J_{1}-1)(2 J_{2}+3)} \left\{ \begin{array}{lll} J_{1} & J_{1}-1 & 1 \\ J_{2} & J_{2}+1 & 1 \\ J & J+1 & 1 \end{array} \right\} C_{(J_{1}-1)(0)(J_{2}+1)(0)}^{(J+1) 0} \sqrt{\frac{J}{2J+1}} \\ && {\kern12pc} + \sqrt{(J_{1})(J_{2})(2 J_{1}+3)(2 J_{2}-1)} \left\{ \begin{array}{lll} J_{1} & J_{1}+1 & 1 \\ J_{2} & J_{2}-1 & 1 \\ J & J+1 & 1 \end{array} \right\} C^{(J+1) 0}_{(J_{1}+1)(0)(J_{2}-1)(0)} \sqrt{\frac{J}{2J+1}} \\ && {\kern12pc} - \sqrt{(J_{1})(J_{2}+1)(2 J_{1}+3)(2 J_{2}+3)} \left\{ \begin{array}{lll} J_{1} & J_{1}+1 & 1 \\ J_{2} & J_{2}+1 & 1 \\ J & J+1 & 1 \end{array} \right\} C^{(J+1) 0}_{(J_{1}+1)(0)(J_{2}+1)(0)} \sqrt{\frac{J}{2J+1}} \\ && {\kern12pc} + \sqrt{(J_{1}+1)(J_{2})(2 J_{1}-1)(2 J_{2}-1)} \left\{\begin{array}{lll} J_{1} & J_{1}-1 & 1 \\ J_{2} & J_{2}-1 & 1 \\ J & J-1 & 1 \end{array}\right\} C^{(J-1) 0}_{(J_{1}-1)(0)(J_{2}-1)(0)} \sqrt{\frac{J+1}{2J+1}} \\ && {\kern12pc} - \sqrt{(J_{1}+1)(J_{2}+1)(2 J_{1}-1)(2 J_{2}+3)} \left\{ \begin{array}{lll} J_{1} & J_{1}-1 & 1 \\ J_{2} & J_{2}+1 & 1 \\ J & J-1 & 1 \end{array} \right\} C^{(J-1) 0}_{(J_{1}-1)(0)(J_{2}+1)(0)} \sqrt{\frac{J+1}{2J+1}} \\ &&{\kern12pc} + \sqrt{(J_{1})(J_{2})(2 J_{1}+3)(2 J_{2}-1)} \left\{ \begin{array}{lll} J_{1} & J_{1}+1 & 1 \\ J_{2} & J_{2}-1 & 1 \\ J & J-1 & 1 \end{array} \right\} C^{(J-1) 0}_{(J_{1}+1)(0)(J_{2}-1)(0)} \sqrt{\frac{J+1}{2J+1}} \\ &&{\kern12pc} - \sqrt{(J_{1})(J_{2}+1)(2 J_{1}+3)(2 J_{2}+3)} \left\{ \begin{array}{lll} J_{1} & J_{1}+1 & 1 \\ J_{2} & J_{2}+1 & 1 \\ J & J-1 & 1 \end{array} \right\} \left. C^{(J-1) 0}_{(J_{1}+1)(0)(J_{2}+1)(0)} \sqrt{\frac{J+1}{2J+1}} \right] \end{array} $$
$$\begin{array}{@{}rcl@{}}C_{J_{1} M_{1} J_{2} M_{2} J M}^{(0,0,-1)}= \sqrt{\frac{3}{2 \pi}} (2 J_{1}+1) C_{J_{1} M_{1} J_{2} M_{2}}^{J M} &\cdot& \left[ \sqrt{(J_{2})(2 J_{2}-1)} \left\{ \begin{array}{lll} J_{1} & J_{1} & 1 \\ J_{2} & J_{2}-1 & 1 \\ J & J & 1 \end{array} \right\} C_{(J_{1})(0)(J_{2}-1)(0)}^{J 0}\right.\\ &&{\kern12pt}\left.-\sqrt{(J_{2}+1)(2 J_{2}+3)} \left\{ \begin{array}{lll} J_{1} & J_{1} & 1 \\ J_{2} & J_{2}+1 & 1 \\ J & J & 1 \end{array} \right\} C_{(J_{1})(0)(J_{2}+1)(0)}^{J 0}\right] \end{array} $$
$$\begin{array}{@{}rcl@{}} C^{(0,1,-1)}_{J_{1} M_{1} J_{2} M_{2} J M} = \sqrt{\frac{3}{2 \pi}} C^{J M}_{J_{1} M_{1} J_{2} M_{2}} &\cdot& \left[ \sqrt{(J_{1}+1)(J_{2})(2 J_{1}-1)(2 J_{2}-1)} \left\{ \begin{array}{lll} J_{1} & J_{1}-1 & 1 \\ J_{2} & J_{2}-1 & 1 \\ J & J & 1 \end{array} \right\} C^{J 0}_{(J_{1}-1)(0)(J_{2}-1)(0)} \right. \\ &&{\kern12pt}-\sqrt{(J_{1}+1)(J_{2}+1)(2 J_{1}-1)(2 J_{2}+3)} \left\{ \begin{array}{lll} J_{1} & J_{1}-1 & 1 \\ J_{2} & J_{2}+1 & 1 \\ J & J & 1 \end{array} \right\} C^{J 0}_{(J_{1}-1)(0)(J_{2}+1)(0)}\\ &&{\kern12pt}+\sqrt{(J_{1})(J_{2})(2 J_{1}+3)(2 J_{2}-1)} \left\{ \begin{array}{lll} J_{1} & J_{1}+1 & 1 \\ J_{2} & J_{2}-1 & 1 \\ J & J & 1 \end{array}\right\} C^{J 0}_{(J_{1}+1)(0)(J_{2}-1)(0)}\\ &&{\kern12pt}\left.-\sqrt{(J_{1})(J_{2}+1)(2 J_{1}+3)(2 J_{2}+3)} \left\{ \begin{array}{lll} J_{1} & J_{1}+1 & 1 \\ J_{2} & J_{2}+1 & 1 \\ J & J & 1 \end{array} \right\} C^{J 0}_{(J_{1}+1)(0)(J_{2}+1)(0)} \right] \end{array} $$
$$\begin{array}{@{}rcl@{}} W^{(-1,-1)}_{J_{1} M_{1} J_{2} M_{2} J M}&=& {\sqrt {\frac{{{J_{1}} }}{{2{J_{1}} + 1}}} \sqrt {\frac{{{J_{2}} }}{{2{J_{2}} + 1}}} W_{JM}^{{J_{1}} - 1,{J_{1}},{M_{1}},{J_{2}} - 1,{J_{2}},{M_{2}}}}\\ &+&{\sqrt {\frac{{{J_{1}} + 1}}{{2{J_{1}} + 1}}} \sqrt {\frac{{{J_{2}} + 1}}{{2{J_{2}} + 1}}} W_{JM}^{{J_{1}} + 1,{J_{1}},{M_{1}},{J_{2}} + 1,{J_{2}},{M_{2}}}}\\ &-&{\sqrt {\frac{{{J_{1}} }}{{2{J_{1}} + 1}}} \sqrt {\frac{{{J_{2}} + 1}}{{2{J_{2}} + 1}}} W_{JM}^{{J_{1}} - 1,{J_{1}},{M_{1}},{J_{2}} + 1,{J_{2}},{M_{2}}}}\\ &-&{\sqrt {\frac{{{J_{1}} + 1}}{{2{J_{1}} + 1}}} \sqrt {\frac{{{J_{2}} }}{{2{J_{2}} + 1}}} W_{JM}^{{J_{1}} + 1,{J_{1}},{M_{1}},{J_{2}} - 1,{J_{2}},{M_{2}}}} \end{array} $$
$$\begin{array}{@{}rcl@{}} W^{(1,1)}_{J_{1} M_{1} J_{2} M_{2} J M}&=& {\sqrt {\frac{{{J_{1}} + 1}}{{2{J_{1}} + 1}}} \sqrt {\frac{{{J_{2}} + 1}}{{2{J_{2}} + 1}}} W_{JM}^{{J_{1}} - 1,{J_{1}},{M_{1}},{J_{2}} - 1,{J_{2}},{M_{2}}}} \\ &+&{\sqrt {\frac{{{J_{1}} }}{{2{J_{1}} + 1}}} \sqrt {\frac{{{J_{2}} }}{{2{J_{2}} + 1}}} W_{JM}^{{J_{1}} + 1,{J_{1}},{M_{1}},{J_{2}} + 1,{J_{2}},{M_{2}}}} \\ &+&{\sqrt {\frac{{{J_{1}} + 1}}{{2{J_{1}} + 1}}} \sqrt {\frac{{{J_{2}} }}{{2{J_{2}} + 1}}} W_{JM}^{{J_{1}} - 1,{J_{1}},{M_{1}},{J_{2}} + 1,{J_{2}},{M_{2}}}} \\ &+&{\sqrt {\frac{{{J_{1}} }}{{2{J_{1}} + 1}}} \sqrt {\frac{{{J_{2}} + 1}}{{2{J_{2}} + 1}}} W_{JM}^{{J_{1}} + 1,{J_{1}},{M_{1}},{J_{2}} - 1,{J_{2}},{M_{2}}}} \end{array} $$
$$W^{(0,0)}_{J_{1} M_{1} J_{2} M_{2} J M}= W_{JM}^{{J_{1}},{J_{1}},{M_{1}},{J_{2}},{J_{2}},{M_{2}}} $$
$$\begin{array}{@{}rcl@{}} W^{(1,0)}_{J_{1} M_{1} J_{2} M_{2} J M}&=& {\sqrt {\frac{{{J_{1}} + 1}}{{2{J_{1}} + 1}}} W_{JM}^{{J_{1} - 1},{J_{1}},{M_{1}},{J_{2}},{J_{2}},{M_{2}}}}\\ &+&{\sqrt {\frac{{{J_{1}} }}{{2{J_{1}} + 1}}} W_{JM}^{{J_{1} + 1},{J_{1}},{M_{1}},{J_{2}},{J_{2}},{M_{2}}}} \end{array} $$
$$\begin{array}{@{}rcl@{}} W^{(0,1)}_{J_{1} M_{1} J_{2} M_{2} J M}&=& {\sqrt {\frac{{{J_{2}} + 1}}{{2{J_{2}} + 1}}} W_{JM}^{{J_{1}},{J_{1}},{M_{1}},{J_{2}} - 1,{J_{2}},{M_{2}}}}\\ &+&{\sqrt {\frac{{{J_{2}} }}{{2{J_{2}} + 1}}} W_{JM}^{{J_{1}},{J_{1}},{M_{1}},{J_{2}} + 1,{J_{2}},{M_{2}}}} \end{array} $$
$$\begin{array}{@{}rcl@{}} W_{LM}^{L1,J1,M1,L2,J2,M2} = {( - 1)^{{J_{2}} + {L_{1}} + L}} C_{{L_{1}}0{L_{2}}0}^{L0}\,C_{{J_{1}}{M_{1}}{J_{2}}{M_{2}}}^{LM} \cdot\\ \sqrt {\frac{{(2{J_{1}} + 1)(2{J_{2}} + 1)(2{L_{1}} + 1)(2{L_{2}} + 1)}}{{4\pi (2L + 1)}}} \left\{ \begin{array}{lll} {{L_{1}}}&{{L_{2}}}&L\\ {{J_{2}}}&{{J_{1}}}&1 \end{array} \right\} \end{array} $$

and where \(C_{{J_{1}}{M_{1}}{J_{2}}{M_{2}}}^{JM}\) is the Clebsch–Gordan coefficient (Chap. 8 in Ref. [33]) and the quantities in braces are Wigner 6j and 9j symbols (Chaps. 9 and 10 in Ref. [33]).

G Validation

We validated the proposed analytical solution derived in the framework of the Mie theory by means of an independent approach based on a surface integral method. The implementation details of this latter method are given in Ref. [36]. We calculated with both methods the SH power per unit solid angle \({{dP^{( {2\omega } )}( {{\hat {\bf {K}}}} )}}/{{d\Omega }}\) radiated by each of the three SH sources of interest. In Fig. 11, an illustrative case is reported of a nanoparticle with R = 100 nm and an incident wavelength of λ = 520 nm. The two solutions coincide within a tolerance of about 3 %.

Fig. 11
figure 11

SH radiation diagrams as a function of θ angle, at ϕ = 0 (blue) and ϕ = 90 (red), for a nanosphere of size R = 100 nm and a pump wavelength λ = 520 nm. Panel (a) is relative to the bulk current density, panel (b) to the surface electric current density, and panel (c) to the surface magnetic current density. Continuous lines are the analytical solution in the framework of the Mie theory and circles are the solution computed by means of a surface integral method

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capretti, A., Forestiere, C., Dal Negro, L. et al. Full-Wave Analytical Solution of Second-Harmonic Generation in Metal Nanospheres. Plasmonics 9, 151–166 (2014). https://doi.org/10.1007/s11468-013-9608-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-013-9608-9

Keywords

Navigation