Skip to main content
Log in

Enhanced SPR Sensitivity with Nano-Micro-Ribbon Grating—an Exhaustive Simulation Mapping

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this study, we theoretically investigate the sensing potential of 2D nano- and micro-ribbon grating structuration on the surface of Kretschmann-based surface plasmon resonance (SPR) biosensors when they are employed for detection of biomolecular binding events. Numerical simulations were carried out by employing a model based on the hybridization of two classical methods, the Fourier modal method and the finite element method. Our calculations confirm the importance of light manipulation by means of structuration of the plasmonic thin film surfaces on the nano- and micro-scales. Not only does it highlight the geometric parameters that allow the sensitivity enhancement compared with the response of the conventional SPR biosensor based on a flat surface but also describes the transition from the regime where the propagating surface plasmon mode dominates to the regime where the localized surface plasmon mode dominates. An exhaustive mapping of the biosensing potential of the 2D nano- and micro-structured biosensors surface is presented, varying the structural parameters related to the ribbon grating dimensions, i.e., the widths and thicknesses. The nano- and micro-structuration also leads to the creation of regions on biosensor chips that are characterized by strongly enhanced electromagnetic (EM) fields. New opportunities for further improving the sensitivity are offered if localization of biomolecules can be carried out in these regions of high EM fields. The continuum of nano- and micro-ribbon structured biosensors described in this study should prove a valuable tool for developing sensitive and reliable 2D-structured plasmonic biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108(2):462–493. doi:10.1021/cr068107d

    Article  CAS  Google Scholar 

  2. Homola J (2003) Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem 377(3):528–539. doi:10.1007/s00216-003-2101-0

    Article  CAS  Google Scholar 

  3. Wolf LK, Fullenkamp DE, Georgiadis RM (2005) Quantitative angle-resolved SPR imaging of DNA–DNA and DNA–drug kinetics. J Am Chem Soc 127(49):17453–17459. doi:10.1021/ja056422w

    Article  CAS  Google Scholar 

  4. Bardin F, Bellemain A, Roger G, Canva M (2009) Surface plasmon resonance spectro-imaging sensor for biomolecular surface interaction characterization. Biosens Bioelectron 24(7):2100–2105. doi:10.1016/j.bios.2008.10.023

    Article  CAS  Google Scholar 

  5. Lecaruyer P, Mannelli I, Courtois V, Goossens M, Canva M (2006) Surface plasmon resonance imaging as a multidimensional surface characterization instrument—application to biochip genotyping. Anal Chim Acta 573–574:333–340. doi:10.1016/j.aca.2006.03.003

    Article  Google Scholar 

  6. Bassil N, Maillart E, Canva M, Levy Y, Millot MC, Pissard S, Narwa R, Goossens M (2003) One hundred spots parallel monitoring of DNA interactions by SPR imaging of polymer-functionalized surfaces applied to the detection of cystic fibrosis mutations. Sensors Actuators B Chem 94(3):313–323. doi:10.1016/s0925-4005(03)00462-3

    Article  CAS  Google Scholar 

  7. Campbell CT, Kim G (2007) SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics. Biomaterials 28(15):2380–2392. doi:10.1016/j.biomaterials.2007.01.047

    Article  CAS  Google Scholar 

  8. Piliarik M, Párová L, Homola J (2009) High-throughput SPR sensor for food safety. Biosens Bioelectron 24(5):1399–1404. doi:10.1016/j.bios.2008.08.012

    Article  CAS  Google Scholar 

  9. Nelson BP, Grimsrud TE, Liles MR, Goodman RM, Corn RM (2000) Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays. Anal Chem 73(1):1–7. doi:10.1021/ac0010431

    Article  Google Scholar 

  10. Hottin J, Moreau J, Roger G, Spadavecchia J, Millot M-C, Goossens M, Canva M (2007) Plasmonic DNA: towards genetic diagnosis chips. Plasmonics 2(4):201–215. doi:10.1007/s11468-007-9039-6

    Article  CAS  Google Scholar 

  11. Maillart E, Brengel-Pesce K, Capela D, Roget A, Livache T, Canva M, Levy Y, Soussi T (2004) Versatile analysis of multiple macromolecular interactions by SPR imaging: application to p53 and DNA interaction. Oncogene 23(32):5543–5550, http://www.nature.com/onc/journal/v23/n32/suppinfo/1207639s1.html

    Article  CAS  Google Scholar 

  12. Wegner GJ, Lee HJ, Marriott G, Corn RM (2003) Fabrication of histidine-tagged fusion protein arrays for surface plasmon resonance imaging studies of protein–protein and protein–DNA interactions. Anal Chem 75(18):4740–4746. doi:10.1021/ac0344438

    Article  CAS  Google Scholar 

  13. Piliarik M, Homola JI (2009) Surface plasmon resonance (SPR) sensors: approaching their limits? Opt Express 17(19):16505–16517

    Article  CAS  Google Scholar 

  14. Nikitin PI, Beloglazov AA, Kochergin VE, Valeiko MV, Ksenevich TI (1999) Surface plasmon resonance interferometry for biological and chemical sensing. Sensors Actuators B Chem 54(1–2):43–50. doi:10.1016/S0925-4005(98)00325-6

    Article  CAS  Google Scholar 

  15. Kabashin AV, Patskovsky S, Grigorenko AN (2009) Phase and amplitude sensitivities in surface plasmon resonance bio and chemical sensing. Opt Express 17(23):21191–21204

    Article  CAS  Google Scholar 

  16. Zynio S, Samoylov A, Surovtseva E, Mirsky V, Shirshov Y (2002) Bimetallic layers increase sensitivity of affinity sensors based on surface plasmon resonance. Sensors 2(2):62–70

    Article  CAS  Google Scholar 

  17. Lecaruyer P, Canva M, Rolland J (2007) Metallic film optimization in a surface plasmon resonance biosensor by the extended Rouard method. Appl Opt 46(12):2361–2369

    Article  CAS  Google Scholar 

  18. Wark AW, Lee HJ, Corn RM (2005) Long-range surface plasmon resonance imaging for bioaffinity sensors. Anal Chem 77(13):3904–3907. doi:10.1021/ac050402v

    Article  CAS  Google Scholar 

  19. Chabot V, Miron Y, Grandbois M, Charette PG (2012) Long range surface plasmon resonance for increased sensitivity in living cell biosensing through greater probing depth. Sensors Actuators B Chem 174(0):94–101. doi:10.1016/j.snb.2012.08.028

    Article  CAS  Google Scholar 

  20. Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG (2008) Nanostructured plasmonic sensors. Chem Rev 108(2):494–521. doi:10.1021/cr068126n

    Article  CAS  Google Scholar 

  21. Kubo W, Fujikawa S (2010) Au double nanopillars with nanogap for plasmonic sensor. Nano Lett 11(1):8–15. doi:10.1021/nl100787b

    Article  Google Scholar 

  22. Kedem O, Tesler AB, Vaskevich A, Rubinstein I (2011) Sensitivity and optimization of localized surface plasmon resonance transducers. ACS Nano 5(2):748–760. doi:10.1021/nn102617d

    Article  CAS  Google Scholar 

  23. Lee K-L, Chen P-W, Wu S-H, Huang J-B, Yang S-Y, Wei P-K (2012) Enhancing surface plasmon detection using template-stripped gold nanoslit arrays on plastic films. ACS Nano 6(4):2931–2939. doi:10.1021/nn3001142

    Article  CAS  Google Scholar 

  24. Kim S, Jung J-M, Choi D-G, Jung H-T, Yang S-M (2006) Patterned arrays of Au rings for localized surface plasmon resonance. Langmuir 22(17):7109–7112. doi:10.1021/la0605844

    Article  CAS  Google Scholar 

  25. Wang H, Brandl DW, Nordlander P, Halas NJ (2006) Plasmonic nanostructures: artificial molecules. Acc Chem Res 40(1):53–62. doi:10.1021/ar0401045

    Article  Google Scholar 

  26. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7(6):442–453

    Article  CAS  Google Scholar 

  27. Kim K, Yoon SJ, Kim D (2006) Nanowire-based enhancement of localized surface plasmon resonance for highly sensitive detection: a theoretical study. Opt Express 14(25):12419–12431

    Article  Google Scholar 

  28. Alleyne CJ, Kirk AG, McPhedran RC, Nicorovici N-AP, Maystre D (2007) Enhanced SPR sensitivity using periodic metallic structures. Opt Express 15(13):8163–8169

    Article  CAS  Google Scholar 

  29. Byun KM, Jang SM, Kim SJ, Kim D (2009) Effect of target localization on the sensitivity of a localized surface plasmon resonance biosensor based on subwavelength metallic nanostructures. J Opt Soc Am A 26(4):1027–1034

    Article  CAS  Google Scholar 

  30. Hoa XD, Tabrizian M, Kirk AG (2009) Rigorous coupled-wave analysis of surface plasmon enhancement from patterned immobilization on nanogratings. J Sensors. doi:10.1155/2009/713641

    Google Scholar 

  31. Hoa XD, Martin M, Jimenez A, Beauvais J, Charette P, Kirk A, Tabrizian M (2008) Fabrication and characterization of patterned immobilization of quantum dots on metallic nano-gratings. Biosens Bioelectron 24(4):970–975. doi:10.1016/j.bios.2008.07.069

    Article  CAS  Google Scholar 

  32. Feuz L, Jönsson P, Jonsson MP, Höök F (2010) Improving the limit of detection of nanoscale sensors by directed binding to high-sensitivity areas. ACS Nano 4(4):2167–2177. doi:10.1021/nn901457f

    Article  CAS  Google Scholar 

  33. Live LS, Bolduc OR, Masson J-F (2010) Propagating surface plasmon resonance on microhole arrays. Anal Chem 82(9):3780–3787. doi:10.1021/ac100177j

    Article  CAS  Google Scholar 

  34. Dhawan A, Duval A, Nakkach M, Barbillon G, Moreau J, Canva M, Vo-Dinh T (2011) Deep UV nano-microstructuring of substrates for surface plasmon resonance imaging. Nanotechnology 22(16):165301

    Article  CAS  Google Scholar 

  35. Duval A, Nakkach M, Bellemain A, Moreau J, Canva M, Dhawan A (2011) Tuan V-D Nanostructured substrates for surface plasmon resonance sensors. In: BioPhotonics, 2011 International Workshop on, 8–10 June 2011 2011. pp 1-3

  36. Lecaruyer P, Maillart E, Canva M, Rolland J (2006) Generalization of the Rouard method to an absorbing thin-film stack and application to surface plasmon resonance. Appl Opt 45(33):8419–8423

    Article  Google Scholar 

  37. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370–4379

    Article  CAS  Google Scholar 

  38. Yoon SJ, Kim D (2008) Target dependence of the sensitivity in periodic nanowire-based localized surface plasmon resonance biosensors. J Opt Soc Am A 25(3):725–735

    Article  Google Scholar 

  39. Malic L, Cui B, Tabrizian M, Veres T (2009) Nanoimprinted plastic substrates for enhanced surface plasmon resonance imaging detection. Opt Express 17(22):20386–20392

    Article  CAS  Google Scholar 

  40. Moharam MG, Pommet DA, Grann EB, Gaylord TK (1995) Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach. J Opt Soc Am A 12(5):1077–1086

    Article  Google Scholar 

  41. Dossou K, Packirisamy M, Fontaine M (2005) Analysis of diffraction gratings by using an edge element method. J Opt Soc Am A 22(2):278–288

    Article  Google Scholar 

  42. Besbes M, Hugonin J, Lalanne P, Van Haver S, Janssen O, Nugrowati A, Xu M, Pereira S, Urbach H, Van De Nes A, Bienstman P, Granet G, Moreau A, Helfert S, Sukharev M, Seideman T, Baida F, Guizal B, Van Labeke D (2007) Numerical analysis of a slit-groove diffraction problem. J Eur Opt Soc 2:7022

    Article  Google Scholar 

  43. Hugonin JP, Besbes M, Lalanne P (2008) Hybridization of electromagnetic numerical methods through the G-matrix algorithm. Opt Lett 33(14):1590–1592

    Article  CAS  Google Scholar 

  44. Schröter U, Heitmann D (1999) Grating couplers for surface plasmons excited on thin metal films in the Kretschmann-Raether configuration. Phys Rev B 60(7):4992–4999

    Article  Google Scholar 

  45. Ritchie RH, Arakawa ET, Cowan JJ, Hamm RN (1968) Surface-plasmon resonance effect in grating diffraction. Phys Rev Lett 21(22):1530–1533

    Article  CAS  Google Scholar 

  46. Barnes WL, Preist TW, Kitson SC, Sambles JR (1996) Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings. Phys Rev B 54(9):6227–6244

    Article  CAS  Google Scholar 

  47. Barnes WLD, Alain Ebbesen, Thomas W (2003) Surface plasmon subwavelength optics. Nature

  48. Dhawan A, Canva M, Vo-Dinh T (2011) Narrow groove plasmonic nano-gratings for surface plasmon resonance sensing. Opt Express 19(2):787–813

    Article  CAS  Google Scholar 

  49. Le Perchec J, Quémerais P, Barbara A, López-Ríos T (2008) Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light. Phys Rev Lett 100(6):066408

    Article  Google Scholar 

  50. Hao E, Schatz GC (2004) Electromagnetic fields around silver nanoparticles and dimers. J Chem Phys 120(1):357–366

    Article  CAS  Google Scholar 

  51. Lehmann F, Richter G, Borzenko T, Hock V, Schmidt G, Molenkamp LW (2003) Fabrication of sub-10-nm Au–Pd structures using 30 keV electron beam lithography and lift-off. Microelectron Eng 65(3):327–333. doi:10.1016/s0167-9317(02)00963-2

    Article  CAS  Google Scholar 

  52. Kottmann JP, Martin OJF, Smith DR, Schultz S (2001) Plasmon resonances of silver nanowires with a nonregular cross section. Phys Rev B 64(23):235402

    Article  Google Scholar 

  53. Piliarik M, Kvasnička P, Galler N, Krenn JR, Homola J (2011) Local refractive index sensitivity of plasmonic nanoparticles. Opt Express 19(10):9213–9220

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge the international-associated laboratories: “Laboratoire Orsay-Tunis sur les Atomes, Molécules, Plasmas” (LIA-LOTAMP), the Department of Electronics and Information Technology (DEITY), Ministry of Communications and Information Technology (MCIT), Government of India, as well as the Nanoscale Research Facility at the Indian Institute of Technology, Delhi for their financial support. Part of this work also took place during sabbatical of M. C. at Duke University with support from CNRS and DGA. LCF/IOGS—CNRS is core member of the Photonics for Life European Network of Excellence in Biophotonics as well as the Labex NanoSaclay from which it received support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maha Chamtouri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chamtouri, M., Dhawan, A., Besbes, M. et al. Enhanced SPR Sensitivity with Nano-Micro-Ribbon Grating—an Exhaustive Simulation Mapping. Plasmonics 9, 79–92 (2014). https://doi.org/10.1007/s11468-013-9600-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-013-9600-4

Keywords

Navigation