Skip to main content
Log in

Plasmonic DNA: Towards Genetic Diagnosis Chips

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The present paper summarizes some of our activities in the field of plasmonic DNA and genetic diagnosis, presenting our system and its capabilities before showing data related to the design and use of functionalized biochips of increasing complexity along with various experimental hybridization conditions, including solutions containing one type of purified synthetic short oligonucleotides or PCR-amplified DNA samples from patients. The diagnosis capability of our system was evaluated by detecting several point mutations that alter the function of the CFTR gene and cause cystic fibrosis, a frequent monogenic disorder selected as a clinical model system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Rothenhausler B, Knoll W (1988) Surface plasmon microscopy. Nature 332:615–617

    Article  Google Scholar 

  2. Jordan CE, Corn RM (1997) Surface plasmon resonance imaging measurements of electrostatic biopolymer adsorption onto chemically modified gold surfaces. Anal Chem (Wash) 69:1449–1456

    Article  CAS  Google Scholar 

  3. Jordan CE, Frutos AG, Thiel AJ, Corn RM (1997) Surface plasmon resonance imaging measurements of DNA hybridization adsorption and streptavidin/DNA multilayer formation at chemically modified gold surfaces. Anal Chem (Wash) 69:4939–4947

    Article  CAS  Google Scholar 

  4. Jin-Lee H, Goodrich TT, Corn RM (2001) SPR imaging measurements of 1-D and 2-D DNA microarrays created from microfluidic channels on gold thin films. Anal Chem (Wash) 73:5525–5531

    CAS  Google Scholar 

  5. Smith EA, Thomas WD, Kiessling LL, Corn RM (2003) Surface plasmon resonance imaging studies of protein–carbohydrate interactions. J Am Chem Soc 125:6140–6148

    Article  CAS  Google Scholar 

  6. Smith E-A, Corn R (2003) Surface plasmon resonance imaging as a tool to monitor biomolecular interactions in an array based format. Appl Spectrosc 57:320A–332A

    Article  CAS  Google Scholar 

  7. Lecaruyer P, Mannelli I, Courtois V, Goossens M, Canva M (2006) Surface plasmon resonance imaging as a multidimensional surface characterization instrument—application to biochip genotyping. Anal Chim Acta 573:333–340 (special issue SI)

    Article  CAS  Google Scholar 

  8. Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sens Actuators B Chem B54:3–15

    Article  CAS  Google Scholar 

  9. De Vries E, Schasfoort R, Van der Plas J, Greve J (1994) Nucleic acid detection with surface plasmon resonance using cationic latex. Biosens Bioelectron 9:509–514

    Article  Google Scholar 

  10. Piscevic D et al (1995) Oligonucleotide hybridization observed by surface plasmon optical techniques. Appl Surf Sci 90:425–436

    Article  CAS  Google Scholar 

  11. Bier F, Kleinjung F, Scheller F (1997) Real-time measurement of nucleic-acid hybridization using evanescent-wave sensors: steps towards the genosensor. Sens Actuators B Chem B38:78–82

    Article  CAS  Google Scholar 

  12. Caruso F, Rodda E, Furlong D, Haring V (1997) DNA binding and hybridization on gold and derivatized surfaces. Sens Actuators B Chem B41:189–197

    Article  CAS  Google Scholar 

  13. Bassil N et al (2003) One hundred spots parallel monitoring of DNA interactions by SPR imaging of polymer-functionalized surfaces applied to the detection of cystic fibrosis mutations. Sens Actuators B Chem B94:313–323

    Article  CAS  Google Scholar 

  14. Mannelli I et al (2006) Surface plasmon resonance imaging (SPRI) system and real-time monitoring of DNA biochip for human genetic mutation diagnosis of DNA amplified samples. Sens Actuators B Chem 119:583–591

    Article  CAS  Google Scholar 

  15. Giakoumaki E et al (2003) Combination of amplification and post-amplification strategies to improve optical DNA sensing. Biosens Bioelectron 19:337–344

    Article  CAS  Google Scholar 

  16. Hayashida M, Yamaguchi A, Misawa H (2005) High sensitivity and large dynamic range surface plasmon resonance sensing for DNA hybridization using Au-nanoparticle-attached probe DNA. Jpn J Appl Phys 44:L1544–1546

    Article  CAS  Google Scholar 

  17. Fan CC et al (2004) An investigation into the influence of secondary structures on DNA hybridization using surface plasmon resonance biosensing. Chem Phys Lett 397:429–434

    Article  CAS  Google Scholar 

  18. Vaisocherova H et al (2006) Investigating oligonucleotide hybridization at subnanomolar level by surface plasmon resonance biosensor method. Biopolymers 82:394–398

    Article  CAS  Google Scholar 

  19. Feriotto G, Lucci M, Bianchi N, Mischiati C, Gambari R (1999) Detection of the deltaF508 (F508del) mutation of the cystic fibrosis gene by surface plasmon resonance and biosensor technology. Hum Mutat 13:390–400

    Article  CAS  Google Scholar 

  20. Feriotto G, Gardenghi S, Bianchi N, Gambari R (2003) Quantitation of Bt-176 maize genomic sequences by surface plasmon resonance-based biospecific interaction analysis of multiplex polymerase chain reaction (PCR). J Agric Food Chem 51:4640–4646

    Article  CAS  Google Scholar 

  21. Rella R et al (2004) Liquid phase SPR imaging experiments for biosensors applications. Biosens Bioelectron 20:1140–1148

    Article  CAS  Google Scholar 

  22. Feriotto G, Breveglieri G, Finotti A, Gardenghi S, Gambari R (2004) Real-time multiplex analysis of four beta-thalassemia mutations employing surface plasmon resonance and biosensor technology. Lab Invest 84:796–803

    Article  CAS  Google Scholar 

  23. Feriotto G et al (2001) Biosensor technology for real-time detection of the cystic fibrosis W1282X mutation in CFTR. Hum Mutat 18:70–81

    Article  CAS  Google Scholar 

  24. Ronghui W, Tombelli S, Minunni M, Spiriti M, Mascini M (2004) Immobilisation of DNA probes for the development of SPR-based sensing. Biosens Bioelectron 20:967–974

    Article  CAS  Google Scholar 

  25. Chen SJ, Su YD, Hsiu FM, Tsou CY, Chen YK (2005) Surface plasmon resonance phase-shift interferometry: real-time DNA microarray hybridization analysis. J Biomed Opt 10:34005

    Article  CAS  Google Scholar 

  26. Chii WL, Kuo PC (2005) Bio-plasmonics: nano/micro structure of surface plasmon resonance devices for biomedicine. Opt Quantum Electron 37:1423

    Article  Google Scholar 

  27. Fiche JB, Buhot A, Calemczuk R, Livache T (2007) Temperature effects on DNA chip experiments from surface plasmon resonance imaging: isotherms and melting curves. Biophys J 92:935–946

    Article  CAS  Google Scholar 

  28. Yang WP, Wu H, Barbas CF (1995) 3rd Surface plasmon resonance based kinetic studies of zinc finger–DNA interactions. J Immunol Methods 183:175–182

    Article  CAS  Google Scholar 

  29. Maillart E et al (2004) Versatile analysis of multiple macromolecular interactions by SPR imaging: application to p53 and DNA interaction. Oncogene 23:5543–5550

    Article  CAS  Google Scholar 

  30. Goodrich TT, Wark AW, Corn RM, Lee HJ (2006) Surface plasmon resonance imaging measurements of protein interactions with biopolymer microarrays. Methods Mol Biol 328:113–130

    CAS  Google Scholar 

  31. Wolf LK, Fullenkamp DE, Georgiadis RM (2005) Quantitative angle-resolved SPR imaging of DNA–DNA and DNA–drug kinetics. J Am Chem Soc 127:17453–17459

    Article  CAS  Google Scholar 

  32. Wilson PK, Jiang T, Minunni ME, Turner AP, Mascini M (2005) A novel optical biosensor format for the detection of clinically relevant TP53 mutations. Biosens Bioelectron 20:2310–2313

    Article  CAS  Google Scholar 

  33. Peterson AW, Wolf LK, Georgiadis RM (2002) Hybridization of mismatched or partially matched DNA at surfaces. J Am Chem Soc 124:14601–14607

    Article  CAS  Google Scholar 

  34. Sato Y, Fujimoto K, Kawaguchi H (2003) Detection of a K-ras point mutation employing peptide nucleic acid at the surface of a SPR biosensor. Colloids Surf B Biointerfaces 27:23–31

    Article  CAS  Google Scholar 

  35. Wegner GJ, Hye Jin LEE, Marriott G, Corn RM (2003) Fabrication of histidine-tagged fusion protein arrays for surface plasmon resonance imaging studies of protein–protein and protein–DNA interactions. Anal Chem (Wash) 75:4740–4746

    Article  CAS  Google Scholar 

  36. Grosjean L et al (2005) A polypyrrole protein microarray for antibody-antigen interaction studies using a label-free detection process. Anal Biochem 347:193–200

    Article  CAS  Google Scholar 

  37. Koubova V et al (2001) Detection of foodborne pathogens using surface plasmon resonance biosensors. Sens Actuators B Chem 74:100–105

    Article  Google Scholar 

  38. Jiri H et al (2002) Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk. Int J Food Microbiol 75:61–69

    Article  Google Scholar 

  39. Mariotti E, Minunni M, Mascini M (2002) Surface plasmon resonance biosensor for genetically modified organisms detection. Anal Chim Acta 453:165–172

    Article  CAS  Google Scholar 

  40. Rella R, Spadavecchia J, Manera M, Quaranta F, Siciliano P (2005) Surface plamon resonance imaging of DNA based biosensors for potential applications in food analysis. Biosens Bioelectron 21:894–900

    Article  CAS  Google Scholar 

  41. Leonard P, Hearty S, Wyatt G, Quinn J, O’Kennedy R (2005) Development of a surface plasmon resonance-based immunoassay for Listeria monocytogenes. J Food Prot 68:728–735

    CAS  Google Scholar 

  42. Kuhn C et al (1999) Surface plasmon resonance measurements reveal stable complex formation between p53 and DNA polymerase alpha. Oncogene 18:769–774

    Article  CAS  Google Scholar 

  43. Shaoyi-Jiang et al (2006) Quantitative and simultaneous detection of four foodborne bacterial pathogens with a multi-channel SPR sensor. Biosens Bioelectron 22:752–758

    Article  CAS  Google Scholar 

  44. Liu X, Bai Y, Xiong J, Wang C, Li Y (2006) Applications of surface plasmon resonance biosensor in microbial detection. Chin J Space Sci 26:264–267

    CAS  Google Scholar 

  45. Chen W, Chen J (1981) Use of surface plasma waves for determination of the thickness and optical constants of thin metallic films. J Opt Soc Am 71:189–191

    Google Scholar 

  46. Homola J, Koudela I, Yee SS (1999) Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison. Sens Actuators B Chem B54:16–24

    Article  CAS  Google Scholar 

  47. Otto A (1968) Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z Phys A 216:398–410

    CAS  Google Scholar 

  48. Kretschmann E, Raether H (1968) Radiative decay of non radiative surface plasmons excited by light. Z Naturforsch T A 23a:2135–2136

    Google Scholar 

  49. Abeles F (1953) Coefficients of reflection and transmission of very thin metallic films. New method for determining their indices and thickness. Rev Opt Theor Instrum 32:257–268

    Google Scholar 

  50. Berreman D (1972) Optics in stratified and anisotropic media: 4 × 4-matrix formulation. J Opt Soc Am 26:502–510

    Google Scholar 

  51. Yeh P (1979) Electromagnetic propagation in birefringent layered media. J Opt Soc Am 69:742–756

    Article  Google Scholar 

  52. Rouard P (1937) Optical properties of very thin metallic films. Ann Phys 7:291–384

    CAS  Google Scholar 

  53. Lecaruyer P, Maillart E, Canva M, Rolland J (2006) Generalization of the Rouard method to an absorbing thin-film stack and application to surface plasmon resonance. Appl Opt 45:8419–8423

    Article  Google Scholar 

  54. Lecaruyer P, Canva M, Rolland J (2007) Metallic film optimisation in a surface plasmon resonance biosensor by the extended Rouard method. Appl Opt 46:2361–2369

    Article  CAS  Google Scholar 

  55. Elhadj S, Singh G, Saraf R (2004) Optical properties of an immobilized DNA monolayer from 255 to 700 nm. Langmuir 20:5539–5543

    Article  CAS  Google Scholar 

  56. Frutos AG, Brockman JM, Corn RM (2000) Reversible protection and reactive patterning of amine- and hydroxyl-terminated self-assembled monolayers on gold surfaces for the fabrication of biopolymer arrays. Langmuir 16:2192–2197

    Article  CAS  Google Scholar 

  57. Thiel AJ, Frutos AG, Jordan CE, Corn RM, Smith LM (1997) In situ surface plasmon resonance imaging detection of DNA hybridization to oligonucleotide arrays on gold surfaces. Anal Chem (Wash) 69:4948–4956

    Article  CAS  Google Scholar 

  58. Dugas V, Depret G, Chevalier Y, Nesme X, Souteyrand E (2004) Immobilization of single-stranded DNA fragments to solid surfaces and their repeatable specific hybridization: covalent binding or adsorption? Sens Actuators B Chem 101:112–121

    Article  CAS  Google Scholar 

  59. Green MG (1975) Avidin. Adv Protein Chem 29:85–133

    Article  CAS  Google Scholar 

  60. Diamandis EP, Christopoulos TK (1991) The biotin (Strept)avidin system—principles and applications in biotechnology. Clin Chem 37:625–636

    CAS  Google Scholar 

  61. Ulman A (1991) An introduction to ultrathin organic films. Elsevier, Boston

    Google Scholar 

  62. Swalen JD et al (1987) Molecular monolayers and films. Langmuir 3:932–950

    Article  CAS  Google Scholar 

  63. Maoz R, Netzer L, Gun J, Sagiv J (1988) Self-assembling monolayers in the construction of planned supramolecular suctures and as modifiers of surface-properties. J Chim Phys 85:1059–1065

    CAS  Google Scholar 

  64. Mannelli I et al (2007) DNA immobilisation procedures for surface plasmon resonance imaging (SPRI) based microarray systems. Biosens Bioelectron 22:803–809

    Article  CAS  Google Scholar 

  65. Lofas S, Johnsson B (1990) A novel hydrogel matrix on gold surfaces in surface-plasmon resonance sensors for fast and efficient covalent immobilization of ligands. J Chem Soc Chem Commun 1526–1528

  66. Piehler J, Brecht A, Hehl K, Gauglitz G (1999) Protein interactions in covalently attached dextran layers. Colloids Surf B Biointerfaces 13:325–336

    Article  CAS  Google Scholar 

  67. Blake RD et al (1999) Statistical mechanical simulation of polymeric DNA melting with MELTSIM. Bioinformatics 15:370–375

    Article  CAS  Google Scholar 

  68. Bommarito S, Peyret N, SantaLucia J Jr (2000) Thermodynamic parameters for DNA sequences with dangling ends. Nucleic Acids Res 28:1929–1934

    Article  CAS  Google Scholar 

  69. Markham NR, Zuker M (2005) DINAMelt web server for nucleic acid melting prediction. Nucleic Acids Res 33:W577–W581

    Article  CAS  Google Scholar 

  70. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to past Ph.D. students, especially Nathalie Bassil, Emmanuel Maillart, and Pierre Lecaruyer, as well as postdoctorates, especially Ilaria Mannelli and Virginie Courtois. They also acknowledge the work of many other colleagues, especially Alain Bellemain and Alain Aide from Laboratoire Charles Fabry de l’Institut d’Optique (LCFIO) for the optimization of the experimental SPR imaging set-up and Laure Lecerf, Valérie Velayoudame, and Serge Pissard from Institut National de la Santé et de la Recherche Médicale (INSERM) and Mohamed Guerrouache from Systèmes Polymères Complexes (SPC) for the surface modification. The authors also acknowledge INSERM, Centre National de la Recherche Scientifique, Vaincre la Mucoviscidose [French association (Defeat CF)], and French Ministère de la Recherche for external support through funding of the research program. Jerome Hottin is currently funded as a Ph.D. student in the MaCSyBio (Material, Components, and System for Biophotonics) team of LCFIO by the GenOptics Company, localized in Orsay, France, the core activity of which is the valorization of SPRI biosensor systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Canva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hottin, J., Moreau, J., Roger, G. et al. Plasmonic DNA: Towards Genetic Diagnosis Chips. Plasmonics 2, 201–215 (2007). https://doi.org/10.1007/s11468-007-9039-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-007-9039-6

Keywords

Navigation