Skip to main content
Log in

Multifactor-Controlled Non-Monotonic Plasmon Shift of Ordered Gold Nanodisk Arrays: Shape-Dependent Interparticle Coupling

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Surface plasmon resonance (SPR) absorption spectra of gold nanodisks hexagonally arranged in planar arrays have been studied by using coupled dipole method and quasi-static approximation. The calculation results reveal that the increasing aspect ratio (AR) of gold disks in the close-packed nanoarray leads to SPR blue shift firstly and then red shift. The critical AR corresponding to the maximum blue shift can be controlled by tuning the interparticle distance and particle size. The physical mechanism of this non-monotonic SPR shift is investigated based on the competition between the influences from shape factor and arranging structure of the array. Although increasing the semi-minor axis of gold disk reduces the AR and leads to a blue shift of SPR, this increasing semi-minor axis also reduces the average gap between two neighboring disks and enhances their coupling. Furthermore, the coulombic attraction between two neighboring disks introduces an additional plasmon damping and results in a red shift of SPR. This competition between AR and interparticle coupling improves the tuning ability of SPR in anisotropic metallic nanoparticle arrays and presents a potential for design and fabrication of optical biochip based on SPR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lazzari R, Roux S, Simonsen I, Jupille J, Bedeaux D, Vlieger J (2002) Multipolar plasmon resonances in supported silver particles: the case of Ag/α-Al2O3 (0001). Phys Rev B 65:235424

    Article  Google Scholar 

  2. Lazzari R, Jupille J, Layet JM (2003) Electron-energy-loss channels and plasmon confinement in supported silver particles. Phys Rev B 68:045428

    Article  Google Scholar 

  3. Mcmahon MD, Ferrara D, Bowie CT, Lopez R, Haglund RF Jr (2007) Second harmonic generation from resonantly excited arrays of gold nanoparticles. Appl Phys B 87:259–265

    Article  CAS  Google Scholar 

  4. Pillai S, Catchpole KR, Trupke T, Green MA (2007) Surface plasmon enhanced silicon solar cells. J Appl Phys 101:093105

    Article  Google Scholar 

  5. Baffou G, Quidant R, Girard C (2009) Heat generation in plasmonic nanostructures: influence of morphology. Appl Phys Lett 94:153109

    Article  Google Scholar 

  6. Huang X, Neretina S, El-Sayed MA (2009) Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater 21:4880–4910

    Article  CAS  Google Scholar 

  7. Meli MV, Lennox RB (2003) Preparation of nanoscale Au islands in patterned arrays. Langmuir 19:9097–9100

    Article  CAS  Google Scholar 

  8. Chu Y, Crozier KB (2009) Experimental study of the interaction between localized and propagating surface plasmons. Opt Lett 34:244–246

    Article  CAS  Google Scholar 

  9. Yang T, Crozier KB (2008) Dispersion and extinction of surface plasmons in an array of gold nanoparticle chains: influence of the air/glass interface. Opt Express 16:8570–8580

    Article  CAS  Google Scholar 

  10. Li HY, Luo XG, Du CL, Chen XN, Fu YQ (2008) Ag dots array fabricated using laser interference technique for biosensing. Sens Actuators B 134:940–944

    Article  Google Scholar 

  11. Mäder M, Höche T, Gerlach JW, Perlt S, Dorfmüller J, Saliba M, Vogelgesang R, Kern K, Rauschenbach B (2010) Plasmonic activity of large-area gold nanodot arrays on arbitrary substrates. Nano Lett 10:47–51

    Article  Google Scholar 

  12. Duan GT, Lv FJ, Cai WP, Luo YY, Li Y, Liu GQ (2010) General synthesis of 2D ordered hollow sphere arrays based on nonshadow deposition dominated colloidal lithography. Langmuir 26:6295–6302

    Article  CAS  Google Scholar 

  13. Zhang LS, Fang Y, Zhang PX (2008) Experimental and DFT theoretical studies of SERS effect on gold nanowires array. Chem Phys Lett 451:102–105

    Article  CAS  Google Scholar 

  14. Shukla S, Kim KT, Baev A, Yoon YK, Litchinitser NM, Prasad PN (2010) Fabrication and characterization of gold-polymer nanocomposite plasmonic nanoarrays in a porous alumina template. ACS Nano 4:2249–2255

    Article  CAS  Google Scholar 

  15. Shih SM, Su WF, Lin YJ, Wu CS, Chen CD (2002) Two-dimensional arrays of self-assembled gold and sulfur-containing fullerene nanoparticles. Langmuir 18:3332–3335

    Article  CAS  Google Scholar 

  16. Kinnan MK, Chumanov G (2010) Plasmon coupling in two-dimensional arrays of silver nanoparticles: II effect of the particle size and interparticle distance. J Phys Chem C 114:7496–7501

    Article  CAS  Google Scholar 

  17. Yang Y, Hori M, Hayakawa T, Nogami M (2005) Self-assembled 3-dimensional arrays of Au@SiO2 core-shell nanoparticles for enhanced optical nonlinearities. Surf Sci 579:215–224

    Article  CAS  Google Scholar 

  18. Dai CA, Wu YL, Lee YH, Chang CJ, Su WF (2006) Fabrication of 2D ordered structure of self-assembled block copolymers containing gold nanoparticles. J Cryst Growth 288:128–136

    Article  CAS  Google Scholar 

  19. Tao A, Sinsermsuksakul P, Yang P (2007) Tunable plasmonic lattices of silver nanocrystals, nature nanotechnology. Nat Nanotechnol 2:435–440

    Article  CAS  Google Scholar 

  20. McPhillips J, Murphy A, Jonsson MP, Hendren WR, Atkinson R, Höök F, Zayats AV, Pollard RJ (2010) High-performance biosensing using arrays of plasmonic nanotubes. ACS Nano 4:2210–2216

    Article  CAS  Google Scholar 

  21. Kim B, Tripp SL, Wei A (2001) Self-organization of large gold nanoparticle arrays. J Am Chem Soc 123:7955–7956

    Article  CAS  Google Scholar 

  22. Galopin E, Noual A, Niedziółka-Jönsson J, Jönsson-Niedziółka M, Akjouj A, Pennec Y, Djafari-Rouhani B, Boukherroub R, Szunerits S (2009) Short- and long-range sensing using plasmonic nanostrucures: experimental and theoretical studies. J Phys Chem C 113:15921–15927

    Article  CAS  Google Scholar 

  23. Pinchuk AO, Schatz GC (2008) Collective surface plasmon resonance coupling in silver nanoshell arrays. Appl Phys B 93:31–38

    Article  CAS  Google Scholar 

  24. Harris N, Arnold MD, Blaber MG, Ford MJ (2009) Plasmonic resonances of closely coupled gold nanosphere chains. J Phys Chem C 113:2784–2791

    Article  CAS  Google Scholar 

  25. Enoch S, Quidant R, Badenes G (2004) Optical sensing based on plasmon coupling in nanoparticle arrays. Opt Express 12:3422–3427

    Article  Google Scholar 

  26. Zou SL, Janel N, Schatz GC (2004) Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. J Chem Phys 120:10871–10875

    Article  CAS  Google Scholar 

  27. Kim S, Jung YJ, Gu GH, Suh JS, Park SM, Ryu S (2009) Discrete dipole approximation calculations of optical properties of silver nanorod arrays in porous anodic alumina. J Phys Chem C 113:16321–16328

    Article  CAS  Google Scholar 

  28. Johnson WL, Kim SA, Utegulov ZN, Shaw JM, Draine BT (2009) Optimization of arrays of gold nanodisks for plasmon-mediated brillouin light scattering. J Phys Chem C 113:14651–14657

    Article  CAS  Google Scholar 

  29. Liu L, Lee W, Huang Z, Scholz R, Gösele U (2008) Fabrication and characterization of a flow-through nanoporous gold nanowire/AAO composite membrane. Nanotechnology 19:335604

    Article  Google Scholar 

  30. Yin SY, Deng QL, Luo XG, Du CL, Zhang YD (2008) The coupled electric field effects on localized surface plasmon resonance in nanoparticle arrays. J Appl Phys 104:024308

    Article  Google Scholar 

  31. Sung J, Hicks EM, Van Duyne RP, Spears KG (2007) Nanoparticle spectroscopy: dipole coupling in two-dimensional arrays of L-shaped silver nanoparticles. J Phys Chem C 111:10368–10376

    Article  CAS  Google Scholar 

  32. Sung J, Hicks EM, Van Duyne RP, Spears KG (2008) Nanoparticle spectroscopy: plasmon coupling in finite-sized two-dimensional arrays of cylindrical silver nanoparticles. J Phys Chem C 112:4091–4096

    Article  CAS  Google Scholar 

  33. Zhu J, Li JJ, Zhao JW, Bai SW (2008) Light absorption efficiencies of gold nanoellipsoid at different resonance frequency. J Mater Sci 43:5199–5205

    Article  CAS  Google Scholar 

  34. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, New York

    Google Scholar 

  35. Averitt RD, Westcott SL, Halas NJ (1999) Linear optical properties of gold nanoshells. J Opt Soc Am B 16:1824–1832

    Article  CAS  Google Scholar 

  36. Bohren CF (1983) Absorption and scattering of light by small particles. Wiley Interscience, New York

    Google Scholar 

  37. Perenboom JAAJ, Wyder P, Meier F (1981) Electronic properties of small metallic particles. Phys Rep 78:173–292

    Article  CAS  Google Scholar 

  38. AuguiéB BWL (2008) Collective resonances in gold nanoparticle arrays. Phys Rev Lett 101:143902

    Article  Google Scholar 

  39. Punnakitikashem P, Chang SH, Huang CW, Liu JP, Hao Y (2010) Design and fabrication of non-superparamagnetic high moment magnetic nanoparticles for bioapplications. J Nanopart Res 12:1101–1106

    Article  CAS  Google Scholar 

  40. Schwartzberg AM, Zhang JZ (2008) Novel optical properties and emerging applications of metal nanostructures. J Phys Chem C 112:10323–10337

    Article  CAS  Google Scholar 

  41. Pinchuk AO, Schatz GC (2008) Nanoparticle optical properties: far- and near-field electrodynamic coupling in a chain of silver spherical nanoparticles. Mater Sci Eng B 149:251–258

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under grant No. 10804091 and the National High-tech Research and Development Program (863 Program) of China under grant No. 2009AA04Z314.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Zhu or Jun-wu Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, J., Li, Jj., Deng, Xc. et al. Multifactor-Controlled Non-Monotonic Plasmon Shift of Ordered Gold Nanodisk Arrays: Shape-Dependent Interparticle Coupling. Plasmonics 6, 261–267 (2011). https://doi.org/10.1007/s11468-010-9198-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-010-9198-8

Keywords

Navigation