Skip to main content
Log in

Second harmonic generation from resonantly excited arrays of gold nanoparticles

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We show that second harmonic generation from lithographically prepared arrays of symmetric gold nanorods can be increased by two orders of magnitude by choosing the nanoparticle size to be resonant with the 800-nm wavelength of the 50-fs pump laser. The angular variation of the second-harmonic yield, which is defined by the pitch of the nanorod array, can be predicted using standard diffraction theory. This in turn makes it possible to bound approximately the relative contributions of dipole and quadrupole oscillations to the total second-harmonic yield; the two contributions appear to be of similar magnitude. Resonant ultrafast irradiation also changes the nanorod morphology, apparently due to surface melting and refreezing. At higher fluence, the intensity dependence of the second-harmonic yield changes from quadratic to cubic, an indication that the reshaping influences the mechanism of second-harmonic generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.R. Shen, The Principles of Nonlinear Optics (John Wiley and Sons, New York, 1984)

    Google Scholar 

  2. J.I. Dadap, J. Shan, K.B. Eisenthal, T.F. Heinz, Phys. Rev. Lett. 83, 4045 (1999)

    Article  ADS  Google Scholar 

  3. J.I. Dadap, J. Shan, T.F. Heinz, J. Opt. Soc. Am. B 21, 1328 (2004)

    Article  ADS  Google Scholar 

  4. H. Tuovinen, M. Kauranen, K. Jefimovs, P. Vahimaa, T. Vallius, J. Turunen, N.V. Tkachenko, H. Lemmetyinen, J. Nonlinear Opt. Phys. Mater. 11, 421 (2002)

    Article  ADS  Google Scholar 

  5. B. Lamprecht, A. Leitner, F.R. Aussenegg, Appl. Phys. B 68, 419 (1999)

    Article  ADS  Google Scholar 

  6. B. Lamprecht, J.R. Krenn, A. Leitner, F.R. Aussenegg, Phys. Rev. Lett. 83, 4421 (1999)

    Article  ADS  Google Scholar 

  7. M.D. McMahon, R. Lopez, R.F. Haglund, E.A. Ray, P.H. Bunton, Phys. Rev. B 73, 041401 (2006)

    Article  ADS  Google Scholar 

  8. B.K. Canfield, S. Kujala, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, Appl. Phys. Lett. 86, 183109 (2005)

    Article  ADS  Google Scholar 

  9. B.K. Canfield, S. Kujalal, K. Jefimovs, T. Vallius, J. Turunen, M. Kauranen, J. Opt. A 7, 110 (2005)

    ADS  Google Scholar 

  10. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, New York, 1983)

    Google Scholar 

  11. N.I. Zheludev, V. I. Emel’yanov, J. Opt. A 6, 26 (2004)

    ADS  Google Scholar 

  12. M.D. McMahon, R. Lopez, H.M. Meyer, L.C. Feldman, R.F. Haglund, Appl. Phys. B 80, 915 (2005)

    Article  ADS  Google Scholar 

  13. J. Nappa, G. Revillod, I. Russier-Antoine, E. Benichou, C. Jonin, P.F. Brevet, Phys. Rev. B 71, 165407 (2005)

    Article  ADS  Google Scholar 

  14. N. Bloembergen, R.K. Chang, S.S. Jha, C.H. Lee, Phys. Rev. 174, 813 (1968)

    Article  ADS  Google Scholar 

  15. W. Lukosz, R.E. Kunz, J. Opt. Soc. Am. 67, 1607 (1977)

    Article  ADS  Google Scholar 

  16. W. Lukosz, R.E. Kunz, J. Opt. Soc. Am. 67, 1615 (1977)

    ADS  Google Scholar 

  17. H.F. Arnoldus, J. Opt. Soc. Am. A 22, 190 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  18. H.F. Arnoldus, J.T. Foley, Opt. Commun. 246, 45 (2005)

    Article  ADS  Google Scholar 

  19. J. Enderlein, T. Ruckstuhl, S. Seeger, Appl. Opt. 38, 724 (1999)

    Article  ADS  Google Scholar 

  20. E. Hecht, Optics (Addison-Wesley, Reading, Massachusetts, 1998)

    Google Scholar 

  21. F. Stietz, J. Bosbach, T. Wenzel, T. Vartanyan, A. Goldmann, F. Träger, Phys. Rev. Lett. 84, 5644 (2000)

    Article  ADS  Google Scholar 

  22. T. Vartanyan, J. Bosbach, F. Stietz, F. Träger, Appl. Phys. B 73, 391 (2001)

    Article  ADS  Google Scholar 

  23. J. Viereck, F. Stietz, M. Stuke, T. Wenzel, F. Träger, Surf. Sci. 383, 749 (1997)

    Article  Google Scholar 

  24. A. Habenicht, M. Olapinski, F. Burmeister, P. Leiderer, J. Boneberg, Science 309, 2043 (2005)

    Article  ADS  Google Scholar 

  25. V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, A. Plech, J. Chem. Phys. 124, 184702 (2006)

    Article  ADS  Google Scholar 

  26. E.G. Gamaly, A.V. Rode, B. Luther-Davies, J. Appl. Phys. 85, 4213 (1999)

    Article  ADS  Google Scholar 

  27. E.C. Hao, G.C. Schatz, R.C. Johnson, J.T. Hupp, J. Chem. Phys. 117, 5963 (2002)

    Article  ADS  Google Scholar 

  28. R.C. Johnson, J.T. Li, J.T. Hupp, G.C. Schatz, Chem. Phys. Lett. 356, 534 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.D. McMahon.

Additional information

PACS

78.67.Bf; 42.65.Ky; 65.80.+n

Rights and permissions

Reprints and permissions

About this article

Cite this article

McMahon, M., Ferrara, D., Bowie, C. et al. Second harmonic generation from resonantly excited arrays of gold nanoparticles. Appl. Phys. B 87, 259–265 (2007). https://doi.org/10.1007/s00340-006-2569-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-006-2569-3

Keywords

Navigation