Skip to main content
Log in

Tuning higher order electric field resonances in plasmonic hexagonal arrays by oxygen-plasma treatment

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Experimental and simulation studies show that a hexagonal array of polystyrene particles on a gold substrate, capped with gold semi-shells, results in increased optical confinement of the resonance modes in comparison with those for arrays without metallic substrate or capping. Well-ordered arrays of polystyrene beads were fabricated by convective deposition, a solution-based self-assembly process. The polystyrene particles exhibited strong optical concentration, with photonic and plasmonic modes as detected in optical spectra and modelling. The resonance wavelengths of the plasmonic hexagonal array were modified by treating the hexagonal arrays with oxygen plasma at fixed power of 150 W for time periods of 0–10 min. The plasma treatment reduced the vertical height of the polystyrene particles, and the resonances were tuned and sharpened after plasma treatment. This increase is attributed to the improved uniformity of the gold semi-shell coating distributed over the polystyrene particles. Additionally, the plasma treatment increased the refractive index of the polystyrene particles due to cross-linking. Devices with these plasmonic hexagonal arrays enable enhanced light–matter interactions, with the flexibility to post-tune the resonance wavelengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G. Groenhof, J.J. Toppari, J. Phys. Chem. Lett. 9, 4848–4851 (2018)

    Article  Google Scholar 

  2. A. Bisht, J. Cadra, M. Wersall, A. Canales, T.J. Antosiewicz, T. Shegai, Nano. Lett. 19, 189–196 (2019)

    Article  ADS  Google Scholar 

  3. C. Schneider, P. Gold, S. Reitzenstein, S. Hofling, M. Kamp, Appl. Phys. B 122, 19 (2016)

    Article  ADS  Google Scholar 

  4. L.-W. Nien, K. Chen, Th. D. Dao, S. Ishii, Ch.-Hw. Hsueh, T. Nagao, Nanoscale 9, 16950 (2017)

  5. J.D. Caldwell, O.J. Glembocki, Y. Francescato, N. Sharac, V. Giannini, F.J. Bezares, J.P. Long, J.C. Owrutsky, I. Vurgaftman, J.G. Tischler, V.D. Wheller, N.D. Bassim, L.M. Shirey, R. Kasica, S.A. Maier, Nano Lett. 13, 3690–3697 (2013)

    Article  ADS  Google Scholar 

  6. Z.Y. Wang, R.J. Zhang, S.Y. Wang, M. Lu, X. Chen, Y.X. Zheng, L.Y. Chen, Z. Ye, C.Z. Wang, K.M. Ho, Sci. Rep. 5, 7810 (2015)

    Article  ADS  Google Scholar 

  7. D. Visser, S.B. Basuvalingam, Y. Desieres, S. Anand, Opt. Express 27, 5353–5367 (2019)

    Article  ADS  Google Scholar 

  8. G. Zhang, C. Lan, R. Gao, J. Zhou, J. Phys. Chem. C 123, 28887–28892 (2019)

    Article  Google Scholar 

  9. Z. Zhang, J. Zhou, Y. Wu, Z. Xia, X. Qin, Appl. Phys. Lett. 116, 113903 (2020)

    Article  ADS  Google Scholar 

  10. S. Yuan, X. Qiu, C. Cui, L. Zhu, Y. Wang, Y. Li, J. Song, Q. Huang, J. Xia, ACS Nano 11, 10704–10711 (2017)

    Article  Google Scholar 

  11. S.-P. Yu, J.A. Muniz, C.-L. Hung, H.J. Kimble, PNAS 116, 12743–12751 (2019)

    Article  ADS  Google Scholar 

  12. S. Campione, S. Liu, L.I. Basilio, L.K. Warne, W.L. Langston, T.S. Luk, J.R. Wendt, J.L. Reno, G.A. Keeler, I. Brener, M.B. Sinclair, ACS Photonics 3, 2362–2367 (2016)

    Article  Google Scholar 

  13. L. Shi, X. Liu, H. Yin, J. Zi, Phys. Lett. A 374, 1059–1062 (2010)

    Article  ADS  Google Scholar 

  14. S. Cushing, L.A. Hornak, J. Lankford, Y. Liu, N. Wu, Appl. Phys. A 103, 955–958 (2011)

    Article  ADS  Google Scholar 

  15. Y. Li, J. Sun, L. Wang, P. Zhan, Zh. Cao, Zh. Wang, Appl. Phys. A 92, 291–294 (2008)

    Article  ADS  Google Scholar 

  16. T. Endo, K. Kerman, N. Nagatani, H.M. Hiepa, D.-K. Kim, Y. Yonezawa, K. Nakano, E. Tamiya, Anal. Chem. 78, 6465–6475 (2006)

    Article  Google Scholar 

  17. X. Hou, Q. Wang, G. Mao, H. Liu, R. Yu, X. Ren, Appl. Surf. Sci. 437, 92–97 (2018)

    Article  ADS  Google Scholar 

  18. Z. Yi, G. Niu, J. Luo, X. Kang, W. Yao, W. Zhang, Y. Yi, Y. Yi, X. Ye, T. Duan, Y. Tang, Sci. Rep. 6, 32314 (2016)

    Article  ADS  Google Scholar 

  19. J. Lee, Q. Zhang, S. Park, A. Choe, Zh. Fan, H. Ko, A.C.S. Appl, Mater. Interfaces 8, 634–642 (2016)

    Article  Google Scholar 

  20. Z. Cai, Z. Xiong, X. Lu, J. Teng, J. Mater. Chem. A 2, 545–553 (2014)

    Article  Google Scholar 

  21. B. Ding, M. Bardosova, M.E. Pemble, A.V. Korovin, U. Peschel, S.G. Romanov, Adv. Funct. Mater. 21, 4182–4192 (2011)

    Article  Google Scholar 

  22. L. Wu, G. Kim, H. Nishi, T. Tatsuma, Langmuir 33, 8976–8981 (2017)

    Article  Google Scholar 

  23. K. Sugawa, T. Tamura, H. Tahare, D. Tamaguchi, T. Akiyama, J. Otsuki, Y. Kusaka, N. Fukuda, H. Ushijima, ACS Nano 7, 9997–10010 (2013)

    Article  Google Scholar 

  24. J.R. Lacowicz, C.D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, K. Aslan, J. Lukomska, E. Matveeva, J. Zhang, R. Badugu, J. Huang, J. Fluoresc. 14, 425–441 (2004)

    Article  Google Scholar 

  25. M. López-García, J. Galisteo-López, A. Blanco, J. Sánchez-Marcos, C. López, A. García-Martín, Small 6, 1757–1761 (2010)

    Article  Google Scholar 

  26. Y. Yang, G.P. Wang, Appl. Phys. Lett. 89, 111104 (2006)

    Article  ADS  Google Scholar 

  27. Z. Liu, G. Liu, X. Liu, S. Huang, Y. Wang, P. Pan, M. Lie, Mater. Lett. 158, 262–265 (2015)

    Article  Google Scholar 

  28. L. Tang, B. Wu, P. Tang, M. Liu, X. Zhan, X. Liu, Z. Liu, Opt. Mater. 91, 58–61 (2019)

    Article  ADS  Google Scholar 

  29. A.M.M. Gherman, A. Vladescu, A.E. Kiss, C. Farcau, Photonics Nanostructures: Fundam. Appl. 38, 100762 (2020)

    Article  Google Scholar 

  30. B.X. Yu, L. Shi, D. Han, J. Zi, P.V. Braun, Adv. Funct. Mater. 20, 1910–1916 (2010)

    Article  Google Scholar 

  31. Zh. Liu, M. Yu, Sh. Huang, X. Liu, Y. Wang, M. Liu, P. Pan, G. Liu, J. Mater. Chem. C 3, 4222–4226 (2015)

    Article  Google Scholar 

  32. C. Farcau, M. Giloan, E. Vinteler, S. Astilean, Appl. Phys. B 106, 849–856 (2012)

    Article  ADS  Google Scholar 

  33. C.A. Tira, I. Ly, R.A.L. Vallee, S. Astilean, C. Farcua, Opt. Mater. Express 7, 2847–2859 (2017)

    Article  ADS  Google Scholar 

  34. C. Farcau, Sci. Rep. 9, 3683 (2019)

    Article  ADS  Google Scholar 

  35. R. Cole, Y. Sugawara, J. Baumberg, S. Mahajan, M. Abdelsalam, P. Bartlett, Phys. Rev. Lett. 97, 137401 (2006)

    Article  ADS  Google Scholar 

  36. M. Lopez-Garcia, J.F. Galisteo-Lopez, C. Lopez, A. Garcia-Martin, Phys. Rev. B 85, 235145 (2012)

    Article  ADS  Google Scholar 

  37. Z. Liu, L. Liu, H. Lu, P. Zhan, W. Du, M. Wan, Z. Wang, Sci. Rep. 7, 43803 (2017)

    Article  ADS  Google Scholar 

  38. P. Gu, L. Qian, Z. Yan, W. Wu, Z. Chen, Z. Wang, Opt. Commun. 419, 103–107 (2018)

    Article  ADS  Google Scholar 

  39. F. Di Stasio, L. Berti, S.O. McDonnell, V. Robbiano, H.L. Anderson, D. Comoretto, F. Cacialli, APL Mater. 1, 042116 (2013)

    Article  ADS  Google Scholar 

  40. D. Rout, R. Vijaya, J. Appl. Phys. 119, 023108 (2016)

    Article  ADS  Google Scholar 

  41. L. Shi, M. Zheng, F. Jin, X. Dong, W. Chen, Z. Zhao, X. Duan, Appl. Opt. 55, 4759–4762 (2016)

    Article  ADS  Google Scholar 

  42. J. Feng, Sh. Bian, Y. Long, H. Yuan, Q. Liao, H. Cai, H. Huang, K. Song, G. Yang, J. Mater. Chem. C 1, 6157–6162 (2013)

    Article  Google Scholar 

  43. N. Vogel, S. Goerres, K. Landfester, C.K. Weiss, Macromol. Chem. Phys. 212, 1719–1734 (2011)

    Article  Google Scholar 

  44. C. Stelling, C. Bernhardt, M. Retsch, Macromol. Chem. Phys. 216, 1682–1688 (2015)

    Article  Google Scholar 

  45. X. Song, Z. Dai, X. Xiao, W. Li, X. Zheng, X. Shang, X. Zhang, G. Cai, W. Wu, F. Meng, C. Jiang, Sci. Rep. 5, 17529 (2015)

    Article  ADS  Google Scholar 

  46. B.J. Tan, C. Sow, K. Lim, F. Cheong, G. Chong, A. Wee, C. Ong, J. Phys. Chem. B 108, 18575–18579 (2004)

    Article  Google Scholar 

  47. Z.A. Lewicka, A. Bahloul, W.W. Yu, V.L. Colvin, Nanoscale 5, 11071–11078 (2013)

    Article  ADS  Google Scholar 

  48. E. Kosobrodova, A. Kondyurin, D.R. McKenzie, M.M.M. Bilek, Nucl. Instr. Methods. Phys. Res. B 304, 57–66 (2013)

    Article  ADS  Google Scholar 

  49. S. Ye, H. Wang, H. Su, L. Chang, S. Wang, X. Zhang, J. Zhang, B. Yang, J. Mater. Chem. C 5, 3962–3972 (2017)

    Article  Google Scholar 

  50. S. Soleimani-Amiri, A. Gholizadeh, S. Rajabali, Z. Sanaee, S. Mohajerzadeh, RSC Adv. 4, 12701–12709 (2014)

    Article  ADS  Google Scholar 

  51. E.M. Akinoglu, A.J. Morfa, M. Giersig, Langmuir 30, 12354–12361 (2014)

    Article  Google Scholar 

  52. F.J. Wendisch, R. Oberreiter, M. Salihovic, M.S. Elsaesser, G.R. Bourret, A.C.S. Appl, Mater. Interfaces 9, 3931–3939 (2017)

    Article  Google Scholar 

  53. L. Luo, E.M. Akinoglu, L. Wu, T. Dodge, X. Wang, G. Zhou, M.J. Naughton, K. Kempa, M. Giersig, Nanotechnology 31, 245302 (2020)

    Article  Google Scholar 

  54. B.K. Gan, A. Kondyurin, M.M.M. Bilek, Langmuir 23, 2741–2746 (2007)

    Article  Google Scholar 

  55. A. Kondyurin, B.K. Gan, M.M.M. Bilek, D.R. McKenzie, K. Mizuno, R. Wuhrer, Nucl. Instr. Methods. Phys. Res. B 266, 1074–1084 (2008)

    Article  ADS  Google Scholar 

  56. B. K. Gan., M. M. M. Bilek, A. Kondyurin, K. Mizuno, D. R. McKenzie, Nucl. Instr. Methods. Phys. Res. B 247, 254–260 (2006)

  57. Y. Han, X. Huang, A.C.W. Rohrbach, C.B. Roth, J. Chem. Phys. 153, 044902 (2020)

    Article  Google Scholar 

  58. M.M.M. Bilek, A. Kondyurin, S. Dekker, B.C. Steel, R.A. Wilhelm, R. Heller, D.R. McKenzie, A.S. Weiss, M. James, W. Moller, J. Phys. Chem. C 119, 16793–16803 (2015)

    Article  Google Scholar 

  59. T. Muangnapoh, A.L. Weldon, J.F. Gilchrist, Appl. Phys. Lett. 103, 181603 (2013)

    Article  ADS  Google Scholar 

  60. M. Joy, T. Muangnapoh, M.A. Snyder, J.F. Gilchrist, Soft Matter 11, 7092 (2015)

    Article  ADS  Google Scholar 

  61. A.F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J.D. Joannopoulos, S.G. Johnson, Comput. Phys. Commun. 181, 687–702 (2010)

    Article  ADS  Google Scholar 

  62. A.D. Rakic, A.B. Djurisic, J.M. Elazar, M.L. Majewski, Appl. Opt. 37, 5271–5283 (1998)

    Article  ADS  Google Scholar 

  63. N. Sultanova, S. Kasarova, I. Nikolov, Acta Phys. Pol. A 116, 585–587 (2009)

    Article  ADS  Google Scholar 

  64. J.F. Shackelford, Introduction to Materials Science for Engineers, 5th edn. (McGraw-Hill, New York, 2000).

    Google Scholar 

Download references

Acknowledgements

The first author thanks the Thailand Development and Promotion of Science and Technology Talent Program for a scholarship. Research funding under the Research Nanotechnology Network (RNN) of National Nanotechnology Center and from Macquarie University is gratefully acknowledged. This work was supported by the Thailand National Science and Technology Development Agency (P1752706).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanyakorn Muangnapoh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2234 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sitpathom, N., Dawes, J.M., Osotchan, T. et al. Tuning higher order electric field resonances in plasmonic hexagonal arrays by oxygen-plasma treatment. Appl. Phys. B 127, 71 (2021). https://doi.org/10.1007/s00340-021-07616-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-021-07616-7

Navigation