Abstract
Quantum computers have made extraordinary progress over the past decade, and significant milestones have been achieved along the path of pursuing universal fault-tolerant quantum computers. Quantum advantage, the tipping point heralding the quantum era, has been accomplished along with several waves of breakthroughs. Quantum hardware has become more integrated and architectural compared to its toddler days. The controlling precision of various physical systems is pushed beyond the fault-tolerant threshold. Meanwhile, quantum computation research has established a new norm by embracing industrialization and commercialization. The joint power of governments, private investors, and tech companies has significantly shaped a new vibrant environment that accelerates the development of this field, now at the beginning of the noisy intermediate-scale quantum era. Here, we first discuss the progress achieved in the field of quantum computation by reviewing the most important algorithms and advances in the most promising technical routes, and then summarizing the next-stage challenges. Furthermore, we illustrate our confidence that solid foundations have been built for the fault-tolerant quantum computer and our optimism that the emergence of quantum killer applications essential for human society shall happen in the future.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
Change history
22 August 2024
An Erratum to this paper has been published: https://doi.org/10.1007/s11467-024-1429-0
References
P. Benioff, The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines, J. Stat. Phys. 22(5), 563 (1980)
R. P. Feynman, Simulating physics with computers, Int. J. Theor. Phys. 21(6–7), 467 (1982)
Y. I. Manin, Vychislimoe i nevychislimoe [Computable and Noncomputable], Sov. Radio, 13 (1980) (in Russian)
P. Shor, Algorithms for quantum computation: Discrete logarithms and factoring, in: Proceedings 35th Annual Symposium on Foundations of Computer Science, IEEE Comput. Soc. Press, Santa Fe, NM, USA, 1994, pp 124–134
M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, 2000
J. I. Cirac and P. Zoller, Quantum computations with cold trapped ions, Phys. Rev. Lett. 74(20), 4091 (1995)
D. G. Cory, A. F. Fahmy, and T. F. Havel, Ensemble quantum computing by NMR spectroscopy, Proc. Natl. Acad. Sci. USA 94(5), 1634 (1997)
N. A. Gershenfeld and I. L. Chuang, Bulk spinresonance quantum computation, Science 275(5298), 350 (1997)
D. G. Cory, M. D. Price, and T. F. Havel, Nuclear magnetic resonance spectroscopy: An experimentally accessible paradigm for quantum computing, Physica D 120(1–2), 82 (1998)
B. E. Kane, A silicon-based nuclear spin quantum computer, Nature 393(6681), 133 (1998)
D. Loss and D. P. DiVincenzo, Quantum computation with quantum dots, Phys. Rev. A 57(1), 120 (1998)
Y. Nakamura, Y. A. Pashkin, and J. S. Tsai, Coherent control of macroscopic quantum states in a single-Cooper-pair box, Nature 398(6730), 786 (1999)
F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, et al., Quantum supremacy using a programmable superconducting processor, Nature 574(7779), 505 (2019)
Y. Wu, W. S. Bao, S. Cao, F. Chen, M. C. Chen, et al., Strong quantum computational advantage using a superconducting quantum processor, Phys. Rev. Lett. 127(18), 180501 (2021)
Q. Zhu, S. Cao, F. Chen, M. C. Chen, X. Chen, et al., Quantum computational advantage via 60-qubit 24-cycle random circuit sampling, Sci. Bull. (Beijing) 67(3), 240 (2022)
H. S. Zhong, H. Wang, Y. H. Deng, M. C. Chen, L. C. Peng, et al., Quantum computational advantage using photons, Science 370(6523), 1460 (2020)
H. S. Zhong, Y. H. Deng, J. Qin, H. Wang, M. C. Chen, et al., Phase-programmable Gaussian boson sampling using stimulated squeezed light, Phys. Rev. Lett. 127(18), 180502 (2021)
L. S. Madsen, F. Laudenbach, M. F. Askarani, F. Rortais, T. Vincent, et al., Quantum computational advantage with a programmable photonic processor, Nature 606(7912), 75 (2022)
M. W. Johnson, M. H. Amin, S. Gildert, T. Lanting, F. Hamze, et al., Quantum annealing with manufactured spins, Nature 473(7346), 194 (2011)
S. Krinner, N. Lacroix, A. Remm, A. Di Paolo, E. Genois, C. Leroux, C. Hellings, S. Lazar, F. Swiadek, J. Herrmann, G. J. Norris, C. K. Andersen, M. Müller, A. Blais, C. Eichler, and A. Wallraff, Realizing repeated quantum error correction in a distance-three surface code, Nature 605(7911), 669 (2022)
Z. Chen, K. J. Satzinger, J. Atalaya, A. N. Korotkov, A. Dunsworth, et al., Exponential suppression of bit or phase errors with cyclic error correction, Nature 595(7867), 383 (2021)
C. K. Andersen, A. Remm, S. Lazar, S. Krinner, N. Lacroix, G. J. Norris, M. Gabureac, C. Eichler, and A. Wallraff, Repeated quantum error detection in a surface code, Nat. Phys. 16(8), 875 (2020)
Y. Zhao, Y. Ye, H. L. Huang, Y. Zhang, D. Wu, et al., Realization of an error-correcting surface code with superconducting qubits, Phys. Rev. Lett. 129(3), 030501 (2022)
J. F. Marques, B. M. Varbanov, M. S. Moreira, H. Ali, N. Muthusubramanian, C. Zachariadis, F. Battistel, M. Beekman, N. Haider, W. Vlothuizen, A. Bruno, B. M. Terhal, and L. DiCarlo, Logical-qubit operations in an error-detecting surface code, Nat. Phys. 18(1), 80 (2022)
F. van Riggelen, W. I. L. Lawrie, M. Russ, N. W. Hendrickx, A. Sammak, M. Rispler, B. M. Terhal, G. Scappucci, and M. Veldhorst, Phase flip code with semiconductor spin qubits, npj Quantum Inf. 8, 124 (2022)
K. Takeda, A. Noiri, T. Nakajima, T. Kobayashi, and S. Tarucha, Quantum error correction with silicon spin qubits, Nature 608(7924), 682 (2022)
G. Waldherr, Y. Wang, S. Zaiser, M. Jamali, T. Schulte-Herbruggen, H. Abe, T. Ohshima, J. Isoya, J. F. Du, P. Neumann, and J. Wrachtrup, Quantum error correction in a solid-state hybrid spin register, Nature 506(7487), 204 (2014)
T. H. Taminiau, J. Cramer, T. van der Sar, V. V. Dobrovitski, and R. Hanson, Universal control and error correction in multi-qubit spin registers in diamond, Nat. Nanotechnol. 9(3), 171 (2014)
M. Abobeih, Y. Wang, J. Randall, S. Loenen, C. Bradley, M. Markham, D. Twitchen, B. Terhal, and T. Taminiau, Fault-tolerant operation of a logical qubit in a diamond quantum processor, Nature 606(7916), 884 (2022)
I. Buluta and F. Nori, Quantum simulators, Science 326(5949), 108 (2009)
I. M. Georgescu, S. Ashhab, and F. Nori, Quantum simulation, Rev. Mod. Phys. 86(1), 153 (2014)
J. Argüello-Luengo, A. Gonzalez-Tudela, T. Shi, P. Zoller, and J. I. Cirac, Analogue quantum chemistry simulation, Nature 574(7777), 215 (2019)
W. Hofstetter and T. Qin, Quantum simulation of strongly correlated condensed matter systems, J. Phys. At. Mol. Opt. Phys. 51(8), 082001 (2018)
R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, et al., Superconducting quantum circuits at the surface code threshold for fault tolerance, Nature 508(7497), 500 (2014)
K. Bharti, A. Cervera-Lierta, T. H. Kyaw, T. Haug, S. Alperin-Lea, A. Anand, M. Degroote, H. Heimonen, J. S. Kottmann, T. Menke, W.-K. Mok, S. Sim, L.-C. Kwek, and A. Aspuru-Guzik, Noisy intermediate-scale quantum (NISQ) algorithms, Rev. Mod. Phys. 94, 015004 (2022)
A. Peruzzo, J. McClean, P. Shadbolt, M. H. Yung, X. Q. Zhou, P. J. Love, A. Aspuru-Guzik, and J. L. O’Brien, A variational eigenvalue solver on a photonic quantum processor, Nat. Commun. 5(1), 4213 (2014)
K. Bharti, A. Cervera-Lierta, T. H. Kyaw, T. Haug, S. Alperin-Lea, A. Anand, M. Degroote, H. Heimonen, J. S. Kottmann, T. Menke, W. K. Mok, S. Sim, L. C. Kwek, and A. Aspuru-Guzik, Noisy intermediatescale quantum algorithms, Rev. Mod. Phys. 94(1), 015004 (2022)
A. W. Harrow, A. Hassidim, and S. Lloyd, Quantum algorithm for linear systems of equations, Phys. Rev. Lett. 103(15), 150502 (2009)
N. H. Chia, A. Gilyen, T. Li, H. H. Lin, E. Tang, and C. Wang, Sampling-based sublinear low-rank matrix arithmetic framework for dequantizing quantum machine learning, in: Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, Association for Computing Machinery, New York, NY, USA, 2020, pp 387–400
E. R. MacQuarrie, C. Simon, S. Simmons, and E. Maine, The emerging commercial landscape of quantum computing, Nat. Rev. Phys. 2(11), 596 (2020)
G. Donati, A look at the full stack, Nat. Rev. Phys. 3(4), 226 (2021)
Y. Alexeev, D. Bacon, K. R. Brown, R. Calderbank, L. D. Carr, et al., Quantum computer systems for scientific discovery, PRX Quantum 2(1), 017001 (2021)
D. P. DiVincenzo, D. Bacon, J. Kempe, G. Burkard, and K. B. Whaley, Universal quantum computation with the exchange interaction, Nature 408(6810), 339 (2000)
A. Das and B. K. Chakrabarti, Colloquium: Quantum annealing and analog quantum computation, Rev. Mod. Phys. 80(3), 1061 (2008)
S. R. Elliott and M. Franz, Colloquium: Majorana fermions in nuclear, particle, and solid-state physics, Rev. Mod. Phys. 87(1), 137 (2015)
E. Prada, P. San-Jose, M. W. A. de Moor, A. Geresdi, E. J. H. Lee, J. Klinovaja, D. Loss, J. Nygard, R. Aguado, and L. P. Kouwenhoven, From Andreev to Majorana bound states in hybrid superconductor—semiconductor nanowires, Nat. Rev. Phys. 2(10), 575 (2020)
D. Deutsch, Quantum theory, the Church—Turing principle and the universal quantum computer, Proc. R. Soc. Lond. A 400(1818), 97 (1985)
D. Deutsch and R. Jozsa, Rapid solution of problems by quantum computation, Proc. R. Soc. Lond. A 439(1907), 553 (1992)
E. Bernstein and U. Vazirani, Quantum complexity theory, in: Proceedings of the Twenty-fifth Annual ACM Symposium on Theory of Computing, STOC’ 93, Association for Computing Machinery, New York, NY, USA, 1993, pp 11–20
D. Simon, On the power of quantum computation, in: Proceedings 35th Annual Symposium on Foundations of Computer Science, IEEE Comput. Soc. Press, Santa Fe, NM, USA, 1994, pp 116–123
R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca, Quantum algorithms revisited, Proc. R. Soc. Lond. A 454(1969), 339 (1998)
A. Y. Kitaev, Quantum measurements and the Abelian stabilizer problem, arXiv: quant-ph/9511026 (1995)
R. Jozsa, Quantum algorithms and the Fourier transform, Proc. R. Soc. Lond. A 454(1969), 323 (1998)
L. K. Grover, A fast quantum mechanical algorithm for database search, in: Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing, 1996, pp 212–219
L. K. Grover, Quantum mechanics helps in searching for a needle in a haystack, Phys. Rev. Lett. 79(2), 325 (1997)
C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, Strengths and weaknesses of quantum computing, SIAM J. Comput. 26(5), 1510 (1997)
G. Brassard and P. Hoyer, An exact quantum polynomial-time algorithm for Simon’s problem, in Proceedings of the Fifth Israeli Symposium on Theory of Computing and Systems, IEEE Comput. Soc, Ramat-Gan, Israel, 1997, pp 12–23
M. Bφyer, G. Brassard, P. Høyer, and A. Tapp, Tight bounds on quantum searching, Fortschr. Phys. 46(4–5), 493 (1998)
G. Brassard, P. Hφyer, M. Mosca, and A. Tapp, Quantum amplitude amplification and estimation, in: Contemporary Mathematics, Vol. 305, edited by S. J. Lomonaco and H. E. Brandt, American Mathematical Society, Providence, Rhode Island, 2002, pp 53–74
L. K. Grover, Fixed-point quantum search, Phys. Rev. Lett. 95(15), 150501 (2005)
L. K. Grover, A. Patel, and T. Tulsi, Quantum algorithms with fixed points: The case of databas search, arXiv: quant-ph/0603132 (2006)
T. J. Yoder, G. H. Low, and I. L. Chuang, Fixed-point quantum search with an optimal number of queries, Phys. Rev. Lett. 113(21), 210501 (2014)
C. Durr and P. Hφyer, A quantum algorithm for finding the minimum, arXiv: quant-ph/9607014 (1996)
E. Novak, Quantum complexity of integration, J. Complexity 17(1), 2 (2001)
G. Brassard, P. Hφyer, and A. Tapp, Quantum counting, in: International Colloquium on Automata, Languages, and Programming, Springer, 1998, pp 820–831
C. Dürr, M. Heiligman, P. Hφyer, and M. Mhalla, Quantum query complexity of some graph problems, SIAM J. Comput. 35(6), 1310 (2006)
A. Ambainis and R. Špalek, Quantum algorithms for matching and network flows, in: Annual Symposium on Theoretical Aspects of Computer Science, Springer, 2006, pp 172–183
E. Farhi and S. Gutmann, Quantum computation and decision trees, Phys. Rev. A 58(2), 915 (1998)
A. M. Childs, E. Farhi, and S. Gutmann, An example of the difference between quantum and classical random walks, Quantum Inf. Process. 1(1/2), 35 (2002)
A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, and D. A. Spielman, Exponential algorithmic speedup by a quantum walk, in: Proceedings of the Thirty-fifth ACM Symposium on Theory of Computing — STOC 03, ACM Press, San Diego, CA, USA, 2003, p. 59
Y. Aharonov, L. Davidovich, and N. Zagury, Quantum random walks, Phys. Rev. A 48(2), 1687 (1993)
D. A. Meyer, From quantum cellular automata to quantum lattice gases, J. Stat. Phys. 85(5–6), 551 (1996)
D. A. Meyer, On the absence of homogeneous scalar unitary cellular automata, Phys. Lett. A 223(5), 337 (1996)
J. Watrous, Quantum simulations of classical random walks and undirected graph connectivity, in: Proceedings of Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat. No. 99CB36317), IEEE Comput. Soc, Atlanta, GA, USA, 1999, pp 180–187
N. Ashwin and V. Ashvin, Quantum walk on the line, arXiv: quant-ph/0010117 (2000)
A. Ambainis, E. Bach, A. Nayak, A. Vishwanath, and J. Watrous, One-dimensional quantum walks, in: Proceedings of the Thirty-third Annual ACM Symposium on Theory of Computing — STOC’ 01, ACM Press, Hersonissos, Greece, 2001, pp 37–49
D. Aharonov, A. Ambainis, J. Kempe, and U. Vazirani, Quantum walks on graphs, in: Proceedings of the Thirty-third Annual ACM Symposium on Theory of Computing — STOC’ 01, ACM Press, Hersonissos, Greece, 2001, pp 50–59
N. Shenvi, J. Kempe, and K. B. Whaley, Quantum random-walk search algorithm, Phys. Rev. A 67(5), 052307 (2003)
A. Ambainis, Quantum walk algorithm for elementdistinctness, in: 45th Annual IEEE Symposium on Foundations of Computer Science, IEEE, Rome, Italy, 2004, pp 22–31
S. Yaoyun, Quantum lower bounds for the collision and the element distinctness problems, in: Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002, IEEE Comput. Soc, Vancouver, BC, Canada, 2002, pp 513–519
A. Ambainis, J. Kempe, and A. Rivosh, Coins make quantum walks faster, in: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA’ 05, Society for Industrial and Applied Mathematics, Vancouver, British Columbia, 2005, pp 1099–1108
M. Szegedy, Quantum speed-up of Markov chain based algorithms, in: 45th Annual IEEE Symposium on Foundations of Computer Science, IEEE, Rome, Italy, 2004, pp 32–41
F. Magniez, A. Nayak, J. Roland, and M. Santha, Search via quantum walk, in: Proceedings of the Thirty-ninth Annual ACM Symposium on Theory of Computing — STOC’ 07, ACM Press, San Diego, California, USA, 2007, p. 575
A. Ambainis, Quantum walks and their algorithmic applications, Int. J. Quant. Inf. 1(4), 507 (2003)
M. Santha, Quantum walk based search algorithms, in: Proceedings of the 5th International Conference on Theory and Applications of Models of Computation, TAMC’08, Springer-Verlag, Berlin, Heidelberg, 2008, pp 31–46
F. Magniez, M. Santha, and M. Szegedy, Quantum algorithms for the triangle problem, in: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA’ 05, Society for Industrial and Applied Mathematics, USA, 2005, pp 1109–1117
F. Magniez and A. Nayak, Quantum complexity of testing group commutativity, in: Proceedings of the 32nd International Conference on Automata, Languages and Programming, ICALP’05, Springer-Verlag, Berlin, Heidelberg, 2005, pp 1312–1324
S. Lloyd, Universal quantum simulators, Science 273(5278), 1073 (1996)
M. Suzuki, Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations, Phys. Lett. A 146(6), 319 (1990)
M. Suzuki, General theory of fractal path integrals with applications to many-body theories and statistical physics, J. Math. Phys. 32(2), 400 (1991)
D. Aharonov and A. Ta-Shma, Adiabatic quantum state generation and statistical zero knowledge, in: Proceedings of the Thirty-fifth ACM Symposium on Theory of Computing — STOC’ 03, ACM Press, San Diego, CA, USA, 2003, p. 20
D. W. Berry, G. Ahokas, R. Cleve, and B. C. Sanders, Efficient quantum algorithms for simulating sparse Hamiltonians, Commun. Math. Phys. 270(2), 359 (2007)
A. M. Childs and R. Kothari, Simulating sparse Hamiltonians with star decompositions, in: Theory of Quantum Computation, Communication, and Cryptography, Vol. 6519, Springer, Berlin, Heidelberg, 2011, pp 94–103
A. M. Childs, On the relationship between continuous and discrete time quantum walk, Commun. Math. Phys. 294(2), 581 (2010)
A. M. Childs and D. W. Berry, Black-box Hamiltonian simulation and unitary implementation, Quantum Inf. Comput. 12(1&2), 29 (2012)
A. M. Childs, and N. Wiebe, Hamiltonian simulation using linear combinations of unitary operations, Quantum Inf. Comput. 12(11&12), 901 (2012)
D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma, Exponential improvement in precision for simulating sparse Hamiltonians, in: Proceedings of the 46th Annual ACM Symposium on Theory of Computing — STOC’ 14, ACM Press, 2014, pp 283–292
D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma, Simulating Hamiltonian dynamics with a truncated Taylor series, Phys. Rev. Lett. 114(9), 090502 (2015)
D. W. Berry, A. M. Childs, and R. Kothari, Hamiltonian simulation with nearly optimal dependence on all parameters, in: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, IEEE, Berkeley, CA, USA, 2015, pp 792–809
G. H. Low, T. J. Yoder, and I. L. Chuang, Methodology of resonant equiangular composite quantum gates, Phys. Rev. X 6(4), 041067 (2016)
G. H. Low and I. L. Chuang, Optimal Hamiltonian simulation by quantum signal processing, Phys. Rev. Lett. 118(1), 010501 (2017)
G. H. Low and I. L. Chuang, Hamiltonian simulation by qubitization, Quantum 3, 163 (2019)
G. H. Low and I. L. Chuang, Hamiltonian simulation by uniform spectral amplification, arXiv: 1707.05391 (2017)
A. Gilyen, Y. Su, G. H. Low, and N. Wiebe, Quantum singular value transformation and beyond: Exponential improvements for quantum matrix arithmetics, in: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, 2019, pp 193–204
J. M. Martyn, Z. M. Rossi, A. K. Tan, and I. L. Chuang, Grand unification of quantum algorithms, PRX Quantum 2(4), 040203 (2021)
A. M. Childs, Y. Su, M. C. Tran, N. Wiebe, and S. Zhu, Theory of Trotter error with commutator scaling, Phys. Rev. X 11(1), 011020 (2021)
S. Lloyd, M. Mohseni, and P. Rebentrost, Quantum algorithms for supervised and unsupervised machine learning, arXiv: 1307.0411 (2013)
S. Lloyd, M. Mohseni, and P. Rebentrost, Quantum principal component analysis, Nat. Phys. 10(9), 631 (2014)
P. Rebentrost, M. Mohseni, and S. Lloyd, Quantum support vector machine for big data classification, Phys. Rev. Lett. 113(13), 130503 (2014)
N. Wiebe, D. Braun, and S. Lloyd, Quantum algorithm for data fitting, Phys. Rev. Lett. 109(5), 050505 (2012)
J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd, Quantum machine learning, Nature 549(7671), 195 (2017)
S. Aaronson, Read the fine print, Nat. Phys. 11(4), 291 (2015)
E. Tang, A quantum-inspired classical algorithm for recommendation systems, in: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, ACM, Phoenix AZ USA, 2019, pp 217–228
I. Kerenidis and A. Prakash, Quantum recommendation systems, in: 8th Innovations in Theoretical Computer Science Conference (ITCS 2017), Schloss Dagstuhl-Leibniz—Zentrum fuer Informatik, 2017
E. Tang, Quantum principal component analysis only achieves an exponential speedup because of its state preparation assumptions, Phys. Rev. Lett. 127(6), 060503 (2021)
A. Gilyen, S. Lloyd, and E. Tang, Quantum-inspired low-rank stochastic regression with logarithmic dependence on the dimension, arXiv: 1811.04909 (2018)
N. H. Chia, H. H. Lin, and C. Wang, Quantum-inspired sublinear classical algorithms for solving low-rank linear systems, arXiv: 1811.04852 (2018)
N. H. Chia, T. Li, H. H. Lin, and C. Wang, Quantu-minspired classical sublinear-time algorithm for solving low-rank semidefinite programming via sampling approaches, arXiv: 1901.03254 (2019)
D. S. Abrams and S. Lloyd, Simulation of many-body Fermi systems on a universal quantum computer, Phys. Rev. Lett. 79(13), 2586 (1997)
D. S. Abrams and S. Lloyd, Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors, Phys. Rev. Lett. 83(24), 5162 (1999)
J. Preskill, Quantum computing in the NISQ era and beyond, Quantum 2, 79 (2018)
E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, Quantum computation by adiabatic evolution, arXiv: quant-ph/0001106 (2000)
E. Farhi, J. Goldstone, and S. Gutmann, A quantum approximate optimization algorithm, arXiv: 1411.4028 (2014)
E. Farhi and H. Neven, Classification with quantum neural networks on near term processors, arXiv: 1802.06002 (2018)
V. Havlíček, A. D. Corcoles, K. Temme, A. W. Harrow, A. Kandala, J. M. Chow, and J. M. Gambetta, Supervised learning with quantum-enhanced feature spaces, Nature 567(7747), 209 (2019)
S. Lloyd and C. Weedbrook, Quantum generative adversarial learning, Phys. Rev. Lett. 121(4), 040502 (2018)
P. L. Dallaire-Demers and N. Killoran, Quantum generative adversarial networks, Phys. Rev. A 98(1), 012324 (2018)
Y. Wu, W. S. Bao, S. Cao, F. Chen, M. C. Chen, et al., Strong quantum computational advantage using a superconducting quantum processor, Phys. Rev. Lett. 127(18), 180501 (2021)
H. S. Zhong, H. Wang, Y. H. Deng, M. C. Chen, L. C. Peng, et al., Quantum computational advantage using photons, Science 370(6523), 1460 (2020)
B. Bauer, S. Bravyi, M. Motta, and G. K. L. Chan, Quantum algorithms for quantum chemistry and quantum materials science, Chem. Rev. 120(22), 12685 (2020)
P. S. Emani, J. Warrell, A. Anticevic, S. Bekiranov, M. Gandal, et al., Quantum computing at the frontiers of biological sciences, Nat. Methods 18(7), 701 (2021)
A. Khoshaman, W. Vinci, B. Denis, E. Andriyash, H. Sadeghi, and M. H. Amin, Quantum variational autoencoder, Quantum Sci. Technol. 4(1), 014001 (2018)
K. Temme, S. Bravyi, and J. M. Gambetta, Error mitigation for short-depth quantum circuits, Phys. Rev. Lett. 119(18), 180509 (2017)
Y. Li and S. C. Benjamin, Efficient variational quantum simulator incorporating active error minimization, Phys. Rev. X 7(2), 021050 (2017)
S. Endo, Z. Cai, S. C. Benjamin, and X. Yuan, Hybrid quantum-classical algorithms and quantum error mitigation, J. Phys. Soc. Jpn. 90(3), 032001 (2021)
S. Endo, S. C. Benjamin, and Y. Li, Practical quantum error mitigation for near-future applications, Phys. Rev. X 8(3), 031027 (2018)
A. Strikis, D. Qin, Y. Chen, S. C. Benjamin, and Y. Li, Learning-based quantum error mitigation, PRX Quantum 2(4), 040330 (2021)
I. Buluta, S. Ashhab, and F. Nori, Natural and artificial atoms for quantum computation, Rep. Prog. Phys. 74(10), 104401 (2011)
L. Hu, S. H. Wu, W. Cai, Y. Ma, X. Mu, Y. Xu, H. Wang, Y. Song, D. L. Deng, C. L. Zou, and L. Sun, Quantum generative adversarial learning in a superconducting quantum circuit, Sci. Adv. 5(1), eaav2761 (2019)
M. P. Harrigan, K. J. Sung, M. Neeley, K. J. Satzinger, F. Arute, et al., Quantum approximate optimization of nonplanar graph problems on a planar superconducting processor, Nat. Phys. 17(3), 332 (2021)
B. Yan, Z. Tan, S. Wei, H. Jiang, W. Wang, H. Wang, L. Luo, Q. Duan, Y. Liu, W. Shi, Y. Fei, X. Meng, Y. Han, Z. Shan, J. Chen, X. Zhu, C. Zhang, F. Jin, H. Li, C. Song, Z. Wang, Z. Ma, H. Wang, and G. L. Long, Factoring integers with sublinear resources on a superconducting quantum processor, arXiv: 2212.12372 (2022)
A. A. Houck, H. E. Tureci, and J. Koch, On-chip quantum simulation with superconducting circuits, Nat. Phys. 8(4), 292 (2012)
P. D. Nation, J. R. Johansson, M. P. Blencowe, and F. Nori, Colloquium: Stimulating uncertainty: Amplifying the quantum vacuum with superconducting circuits, Rev. Mod. Phys. 84(1), 1 (2012)
R. Barends, L. Lamata, J. Kelly, L. Garcia-Alvarez, A. G. Fowler, et al., Digital quantum simulation of fermionic models with a superconducting circuit, Nat. Commun. 6(1), 7654 (2015)
Y. Salathé, M. Mondal, M. Oppliger, J. Heinsoo, P. Kurpiers, A. Potočnik, A. Mezzacapo, U. Las Heras, L. Lamata, E. Solano, S. Filipp, and A. Wallraff, Digital quantum simulation of spin models with circuit quantum electrodynamics, Phys. Rev. X 5(2), 021027 (2015)
N. K. Langford, R. Sagastizabal, M. Kounalakis, C. Dickel, A. Bruno, F. Luthi, D. J. Thoen, A. Endo, and L. DiCarlo, Experimentally simulating the dynamics of quantum light and matter at deep-strong coupling, Nat. Commun. 8(1), 1715 (2017)
D. W. Wang, C. Song, W. Feng, H. Cai, D. Xu, H. Deng, H. Li, D. Zheng, X. Zhu, H. Wang, S. Y. Zhu, and M. O. Scully, Synthesis of antisymmetric spin exchange interaction and chiral spin clusters in superconducting circuits, Nat. Phys. 15(4), 382 (2019)
A. J. Kollár, M. Fitzpatrick, and A. A. Houck, Hyperbolic lattices in circuit quantum electrodynamics, Nature 571(7763), 45 (2019)
C. S. Wang, J. C. Curtis, B. J. Lester, Y. Zhang, Y. Y. Gao, J. Freeze, V. S. Batista, P. H. Vaccaro, I. L. Chuang, L. Frunzio, L. Jiang, S. M. Girvin, and R. J. Schoelkopf, Efficient multiphoton sampling of molecular vibronic spectra on a superconducting bosonic processor, Phys. Rev. X 10(2), 021060 (2020)
M. Gong, S. Wang, C. Zha, M. C. Chen, H. L. Huang, et al., Quantum walks on a programmable two-dimensional 62-qubit superconducting processor, Science 372(6545), 948 (2021)
A. D. King, S. Suzuki, J. Raymond, A. Zucca, T. Lanting, et al., Coherent quantum annealing in a programmable 2000 qubit Ising chain, Nat. Phys. 18(11), 1324 (2022)
P. J. J. O’Malley, R. Babbush, I. D. Kivlichan, J. Romero, J. R. McClean, et al., Scalable quantum simulation of molecular energies, Phys. Rev. X 6(3), 031007 (2016)
A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M. Chow, and J. M. Gambetta, Hardware efficient variational quantum eigensolver for small molecules and quantum magnets, Nature 549(7671), 242 (2017)
J. I. Colless, V. V. Ramasesh, D. Dahlen, M. S. Blok, M. E. Kimchi-Schwartz, J. R. McClean, J. Carter, W. A. De Jong, and I. Siddiqi, Computation of molecular spectra on a quantum processor with an error-resilient algorithm, Phys. Rev. X 8(1), 011021 (2018)
F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, et al., Hartree—Fock on a superconducting qubit quantum computer, Science 369(6507), 1084 (2020)
P. Roushan, C. Neill, J. Tangpanitanon, V. M. Bastidas, A. Megrant, et al., Spectroscopic signatures of localization with interacting photons in superconducting qubits, Science 358(6367), 1175 (2017)
R. Ma, B. Saxberg, C. Owens, N. Leung, Y. Lu, J. Simon, and D. I. Schuster, A dissipatively stabilized Mott insulator of photons, Nature 566(7742) (2019)
K. Xu, Z. H. Sun, W. Liu, Y. R. Zhang, H. Li, H. Dong, W. Ren, P. Zhang, F. Nori, D. Zheng, H. Fan, and H. Wang, Probing dynamical phase transitions with a superconducting quantum simulator, Sci. Adv. 6(25), eaba4935 (2020)
Q. Guo, C. Cheng, Z. H. Sun, Z. Song, H. Li, Z. Wang, W. Ren, H. Dong, D. Zheng, Y. R. Zhang, R. Mondaini, H. Fan, and H. Wang, Observation of energy-resolved many-body localization, Nat. Phys. 17(2), 234 (2021)
X. Mi, M. Ippoliti, C. Quintana, A. Greene, Z. Chen, et al., Time-crystalline eigenstate order on a quantum processor, Nature 601(7894), 531 (2022)
X. Zhang, W. Jiang, J. Deng, K. Wang, J. Chen, P. Zhang, W. Ren, H. Dong, S. Xu, Y. Gao, F. Jin, X. Zhu, Q. Guo, H. Li, C. Song, A. V. Gorshkov, T. Iadecola, F. Liu, Z. X. Gong, Z. Wang, D. L. Deng, and H. Wang, Digital quantum simulation of Floquet symmetry-protected topological phases, Nature 607(7919), 468 (2022)
P. Forn-Díaz, J. J. Garcia-Ripoll, B. Peropadre, J. L. Orgiazzi, M. A. Yurtalan, R. Belyansky, C. M. Wilson, and A. Lupascu, Ultrastrong coupling of a single artificial atom to an electromagnetic continuum in the nonperturbative regime, Nat. Phys. 13(1), 39 (2017)
F. Yoshihara, T. Fuse, S. Ashhab, K. Kakuyanagi, S. Saito, and K. Semba, Superconducting qubit-oscillator circuit beyond the ultrastrong-coupling regime, Nat. Phys. 13(1), 44 (2017)
S. J. Bosman, M. F. Gely, V. Singh, A. Bruno, D. Bothner, and G. A. Steele, Multi-mode ultra-strong coupling in circuit quantum electrodynamics, npj Quantum Inf. 3, 46 (2017)
A. Frisk Kockum, A. Miranowicz, S. De Liberato, S. Savasta, and F. Nori, Ultrastrong coupling between light and matter, Nat. Rev. Phys. 1(1), 19 (2019)
W. Wang, Y. Wu, Y. Ma, W. Cai, L. Hu, X. Mu, Y. Xu, Z. J. Chen, H. Wang, Y. P. Song, H. Yuan, C. L. Zou, L. M. Duan, and L. Sun, Heisenberg-limited singlemode quantum metrology in a superconducting circuit, Nat. Commun. 10(1), 4382 (2019)
K. Xu, Y. R. Zhang, Z. H. Sun, H. Li, P. Song, Z. Xiang, K. Huang, H. Li, Y. H. Shi, C. T. Chen, X. Song, D. Zheng, F. Nori, H. Wang, and H. Fan, Metrological characterization of non-Gaussian entangled states of superconducting qubits, Phys. Rev. Lett. 128(15), 150501 (2022)
A. Potočnik, A. Bargerbos, F. A. Y. N. Schroder, S. A. Khan, M. C. Collodo, S. Gasparinetti, Y. Salathe, C. Creatore, C. Eichler, H. E. Türeci, A. W. Chin, and A. Wallraff, Studying light-harvesting models with superconducting circuits, Nat. Commun. 9(1), 904 (2018)
J. Q. You and F. Nori, Atomic physics and quantum optics using superconducting circuits, Nature 474(7353), 589 (2011)
H. Paik, D. I. Schuster, L. S. Bishop, G. Kirchmair, G. Catelani, A. P. Sears, B. R. Johnson, M. J. Reagor, L. Frunzio, L. I. Glazman, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf, Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture, Phys. Rev. Lett. 107(24), 240501 (2011)
R. Barends, J. Kelly, A. Megrant, D. Sank, E. Jeffrey, Y. Chen, Y. Yin, B. Chiaro, J. Mutus, C. Neill, P. O’ Malley, P. Roushan, J. Wenner, T. C. White, A. N. Cleland, and J. M. Martinis, Coherent Josephson qubit suitable for scalable quantum integrated circuits, Phys. Rev. Lett. 111(8), 080502 (2013)
Y. Zhong, H. S. Chang, A. Bienfait, E. Dumur, M. H. Chou, C. R. Conner, J. Grebel, R. G. Povey, H. Yan, D. I. Schuster, and A. N. Cleland, Deterministic multi-qubit entanglement in a quantum network, Nature 590(7847), 571 (2021)
M. H. Devoret and J. M. Martinis, Implementing qubits with superconducting integrated circuits, Quantum Inf. Process. 3(1–5), 163 (2004)
J. Q. You and F. Nori, Superconducting circuits and quantum information, Phys. Today 58(11), 42 (2005)
J. Clarke and F. K. Wilhelm, Superconducting quantum bits, Nature 453(7198), 1031 (2008)
R. J. Schoelkopf and S. M. Girvin, Wiring up quantum systems, Nature 451(7179), 664 (2008)
Z. L. Xiang, S. Ashhab, J. Q. You, and F. Nori, Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems, Rev. Mod. Phys. 85(2), 623 (2013)
S. M. Girvin, Circuit QED: Superconducting Qubits Coupled to Microwave Photons, Oxford University Press, 2014
U. Vool and M. Devoret, Introduction to quantum electromagnetic circuits, Int. J. Circuit Theory Appl. 45(7), 897 (2017)
X. Gu, A. F. Kockum, A. Miranowicz, Y. Liu, and F. Nori, Microwave photonics with superconducting quantum circuits, Phys. Rep. 718–719, 1 (2017)
J. M. Gambetta, J. M. Chow, and M. Steffen, Building logical qubits in a superconducting quantum computing system, npj Quantum Inf. 3, 2 (2017)
G. Wendin, Quantum information processing with superconducting circuits: A review, Rep. Prog. Phys. 80(10), 106001 (2017)
P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and W. D. Oliver, A quantum engineer’s guide to superconducting qubits, Appl. Phys. Rev. 6(2), 021318 (2019)
A. F. Kockum and F. Nori, Quantum bits with Josephson junctions, in: Fundamentals and Frontiers of the Josephson Effect, edited by F. Tafuri, Springer International Publishing, Cham, 2019, pp 703–741
M. Kjaergaard, M. E. Schwartz, J. Braumuller, P. Krantz, J. I. J. Wang, S. Gustavsson, and W. D. Oliver, Superconducting qubits: Current state of play, Annu. Rev. Condens. Matter Phys. 11(1), 369 (2020)
H. L. Huang, D. Wu, D. Fan, and X. Zhu, Superconducting quantum computing: A review, Sci. China Inf. Sci. 63(8), 180501 (2020)
A. Blais, A. L. Grimsmo, S. Girvin, and A. Wallraff, Circuit quantum electrodynamics, Rev. Mod. Phys. 93(2), 025005 (2021)
S. E. Rasmussen, K. S. Christensen, S. P. Pedersen, L. B. Kristensen, and T. Bækkegaard, N. J. S. Loft, and N. T. Zinner, Superconducting circuit companion — An introduction with worked examples, PRX Quantum 2(4), 040204 (2021)
N. P. De Leon, K. M. Itoh, D. Kim, K. K. Mehta, T. E. Northup, H. Paik, B. S. Palmer, N. Samarth, S. Sangtawesin, and D. W. Steuerman, Materials challenges and opportunities for quantum computing hardware, Science 372(6539), eabb2823 (2021)
S. Kwon, A. Tomonaga, G. L. Bhai, S. J. Devitt, and J.-S. Tsai, Gate-based superconducting quantum computing, J. Appl. Phys. 129(4), 041102 (2021)
M. H. Devoret, Quantum Fluctuations in Electrical Circuits, Les Houches Session LXIII, Oxford University Press, 1997
M. Tinkham, Introduction to Superconductivity, Courier Corporation, 2004
V. Bouchiat, D. Vion, P. Joyez, D. Esteve, and M. H. Devoret, Quantum coherence with a single Cooper pair, Phys. Scr. T76(1), 165 (1998)
T. P. Orlando, J. E. Mooij, L. Tian, C. H. van der Wal, L. S. Levitov, S. Lloyd, and J. J. Mazo, Superconducting persistent-current qubit, Phys. Rev. B 60(22), 15398 (1999)
J. E. Mooij, T. P. Orlando, L. Levitov, L. Tian, C. H. van der Wal, and S. Lloyd, Josephson persistent-current qubit, Science 285(5430), 1036 (1999)
J. M. Martinis, Superconducting phase qubits, Quantum Inf. Process. 8(2–3), 81 (2009)
C. H. van der Wal, A. C. J. ter Haar, F. K. Wilhelm, R. N. Schouten, C. J. P. M. Harmans, T. P. Orlando, S. Lloyd, and J. E. Mooij, Quantum superposition of macroscopic persistent-current states, Science 290 (5492), 773 (2000)
J. R. Friedman, V. Patel, W. Chen, S. K. Tolpygo, and J. E. Lukens, Quantum superposition of distinct macroscopic states, Nature 406(6791), 43 (2000)
J. M. Martinis, S. Nam, J. Aumentado, and C. Urbina, Rabi oscillations in a large Josephson-junction qubit, Phys. Rev. Lett. 89(11), 117901 (2002)
Y. Yu, S. Han, X. Chu, S. I. Chu, and Z. Wang, Coherent temporal oscillations of macroscopic quantum states in a Josephson junction, Science 296(5569), 889 (2002)
T. Yamamoto, Y. A. Pashkin, O. Astafiev, Y. Nakamura, and J. S. Tsai, Demonstration of conditional gate operation using superconducting charge qubits, Nature 425(6961), 941 (2003)
I. Chiorescu, Y. Nakamura, C. J. P. M. Harmans, and J. E. Mooij, Coherent quantum dynamics of a superconducting flux qubit, Science 299(5614), 1869 (2003)
A. J. Berkley, H. Xu, R. C. Ramos, M. A. Gubrud, F. W. Strauch, P. R. Johnson, J. R. Anderson, A. J. Dragt, C. J. Lobb, and F. C. Wellstood, Entangled macroscopic quantum states in two superconducting qubits, Science 300(5625), 1548 (2003)
A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics, Nature 431(7005), 162 (2004)
W. D. Oliver, Y. Yu, J. C. Lee, K. K. Berggren, L. S. Levitov, and T. P. Orlando, Mach—Zehnder interferometry in a strongly driven superconducting qubit, Science 310(5754), 1653 (2005)
M. Steffen, M. Ansmann, R. C. Bialczak, N. Katz, E. Lucero, R. McDermott, M. Neeley, E. M. Weig, A. N. Cleland, and J. M. Martinis, Measurement of the entanglement of two superconducting qubits via state tomography, Science 313(5792), 1423 (2006)
D. I. Schuster, A. A. Houck, J. A. Schreier, A. Wallraff, J. M. Gambetta, A. Blais, L. Frunzio, J. Majer, B. Johnson, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, Resolving photon number states in a superconducting circuit, Nature 445(7127), 515 (2007)
M. A. Sillanpää, J. I. Park, and R. W. Simmonds, Coherent quantum state storage and transfer between two phase qubits via a resonant cavity, Nature 449(7161), 438 (2007)
J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster, J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, Charge-insensitive qubit design derived from the Cooper pair box, Phys. Rev. A 76(4), 042319 (2007)
J. Q. You, X. Hu, S. Ashhab, and F. Nori, Low-decoherence flux qubit, Phys. Rev. B 75(14), 140515 (2007)
J. A. Schreier, A. A. Houck, J. Koch, D. I. Schuster, B. R. Johnson, J. M. Chow, J. M. Gambetta, J. Majer, L. Frunzio, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, Suppressing charge noise decoherence in superconducting charge qubits, Phys. Rev. B 77(18), 180502 (2008)
J. Braumüller, M. Sandberg, M. R. Vissers, A. Schneider, S. Schlor, L. Grunhaupt, H. Rotzinger, M. Marthaler, A. Lukashenko, A. Dieter, A. V. Ustinov, M. Weides, and D. P. Pappas, Concentric transmon qubit featuring fast tunability and an anisotropic magnetic dipole moment, Appl. Phys. Lett. 108(3), 032601 (2016)
M. Hutchings, J. Hertzberg, Y. Liu, N. Bronn, G. Keefe, M. Brink, J. M. Chow, and B. Plourde, Tunable superconducting qubits with flux-independent coherence, Phys. Rev. Appl. 8(4), 044003 (2017)
V. E. Manucharyan, J. Koch, L. I. Glazman, and M. H. Devoret, Fluxonium: Single Cooper-pair circuit free of charge offsets, Science 326(5949), 113 (2009)
L. B. Nguyen, Y. H. Lin, A. Somoroff, R. Mencia, N. Grabon, and V. E. Manucharyan, High-coherence fluxonium qubit, Phys. Rev. X 9(4), 041041 (2019)
H. Zhang, S. Chakram, T. Roy, N. Earnest, Y. Lu, Z. Huang, D. Weiss, J. Koch, and D. I. Schuster, Universal fast-flux control of a coherent, low-frequency qubit, Phys. Rev. X 11(1), 011010 (2021)
F. Bao, H. Deng, D. Ding, R. Gao, X. Gao, et al., Fluxonium: An alternative qubit platform for high-fidelity operations, Phys. Rev. Lett. 129(1), 010502 (2022)
M. Steffen, S. Kumar, D. P. DiVincenzo, J. R. Rozen, G. A. Keefe, M. B. Rothwell, and M. B. Ketchen, High-coherence hybrid superconducting qubit, Phys. Rev. Lett. 105(10), 100502 (2010)
F. Yan, S. Gustavsson, A. Kamal, J. Birenbaum, A. P. Sears, et al., The flux qubit revisited to enhance coherence and reproducibility, Nat. Commun. 7(1), 12964 (2016)
J. Ku, X. Xu, M. Brink, D. C. McKay, J. B. Hertzberg, M. H. Ansari, and B. Plourde, Suppression of unwanted ZZ interactions in a hybrid two-qubit system, Phys. Rev. Lett. 125(20), 200504 (2020)
F. Yan, Y. Sung, P. Krantz, A. Kamal, D. K. Kim, J. L. Yoder, T. P. Orlando, S. Gustavsson, and W. D. Oliver, Engineering framework for optimizing superconducting qubit designs, arXiv: 2006.04130 (2020)
A. Gyenis, P. S. Mundada, A. Di Paolo, T. M. Hazard, X. You, D. I. Schuster, J. Koch, A. Blais, and A. A. Houck, Experimental realization of a protected superconducting circuit derived from the 0—π qubit, PRX Quantum 2(1), 010339 (2021)
J. Q. You and F. Nori, Quantum information processing with superconducting qubits in a microwave field, Phys. Rev. B 68, 064509 (2003)
A. Blais, R. S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation, Phys. Rev. A 69(6), 062320 (2004)
M. D. Reed, B. R. Johnson, A. A. Houck, L. Di-Carlo, J. M. Chow, D. I. Schuster, L. Frunzio, and R. J. Schoelkopf, Fast reset and suppressing spontaneous emission of a superconducting qubit, Appl. Phys. Lett. 96(20), 203110 (2010)
E. Jeffrey, D. Sank, J. Mutus, T. White, J. Kelly, R. Barends, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, A. Megrant, P. J. J. O’Malley, C. Neill, P. Roushan, A. Vainsencher, J. Wenner, A. N. Cleland, and J. M. Martinis, Fast accurate state measurement with superconducting qubits, Phys. Rev. Lett. 112(19), 190504 (2014)
N. T. Bronn, Y. Liu, J. B. Hertzberg, A. D. Corcoles, A. A. Houck, J. M. Gambetta, and J. M. Chow, Broadband filters for abatement of spontaneous emission in circuit quantum electrodynamics, Appl. Phys. Lett. 107(17), 172601 (2015)
T. Walter, P. Kurpiers, S. Gasparinetti, P. Magnard, A. Potočnik, Y. Salathe, M. Pechal, M. Mondal, M. Oppliger, C. Eichler, and A. Wallraff, Rapid high-fidelity single-shot dispersive readout of superconducting qubits, Phys. Rev. Appl. 7(5), 054020 (2017)
B. Yurke, L. R. Corruccini, P. G. Kaminsky, L. W. Rupp, A. D. Smith, A. H. Silver, R. W. Simon, and E. A. Whittaker, Observation of parametric amplification and deamplification in a Josephson parametric amplifier, Phys. Rev. A 39(5), 2519 (1989)
R. Vijay, M. H. Devoret, and I. Siddiqi, The Josephson bifurcation amplifier, Rev. Sci. Instrum. 80(11), 111101 (2009)
A. Roy and M. Devoret, Introduction to parametric amplification of quantum signals with Josephson circuits, C. R. Phys. 17(7), 740 (2016)
I. Siddiqi, R. Vijay, F. Pierre, C. M. Wilson, M. Metcalfe, C. Rigetti, L. Frunzio, and M. H. Devoret, RF-driven Josephson bifurcation amplifier for quantum measurement, Phys. Rev. Lett. 93(20), 207002 (2004)
M. A. Castellanos-Beltran, K. D. Irwin, G. C. Hilton, L. R. Vale, and K. W. Lehnert, Amplification and squeezing of quantum noise with a tunable Josephson metamaterial, Nat. Phys. 4(12), 929 (2008)
T. Yamamoto, K. Inomata, M. Watanabe, K. Matsuba, T. Miyazaki, W. D. Oliver, Y. Nakamura, and J. S. Tsai, Flux-driven Josephson parametric amplifier, Appl. Phys. Lett. 93(4), 042510 (2008)
J. R. Johansson, G. Johansson, C. M. Wilson, and F. Nori, Dynamical Casimir effect in a superconducting coplanar waveguide, Phys. Rev. Lett. 103(14), 147003 (2009)
N. Bergeal, F. Schackert, M. Metcalfe, R. Vijay, V. E. Manucharyan, L. Frunzio, D. E. Prober, R. J. Schoelkopf, S. M. Girvin, and M. H. Devoret, Phase-preserving amplification near the quantum limit with a Josephson ring modulator, Nature 465(7294), 64 (2010)
C. Macklin, K. O’Brien, D. Hover, M. E. Schwartz, V. Bolkhovsky, X. Zhang, W. D. Oliver, and I. Siddiqi, A near-quantum-limited Josephson traveling-wave parametric amplifier, Science 350(6258), 307 (2015)
Y. Chen, D. Sank, P. O’Malley, T. White, R. Barends, et al., Multiplexed dispersive readout of superconducting phase qubits, Appl. Phys. Lett. 101(18), 182601 (2012)
S. S. Elder, C. S. Wang, P. Reinhold, C. T. Hann, K. S. Chou, B. J. Lester, S. Rosenblum, L. Frunzio, L. Jiang, and R. J. Schoelkopf, High-fidelity measurement of qubits encoded in multilevel superconducting circuits, Phys. Rev. X 10(1), 011001 (2020)
A. Opremcak, I. V. Pechenezhskiy, C. Howington, B. G. Christensen, M. A. Beck, et al., Measurement of a superconducting qubit with a microwave photon counter, Science 361(6408), 1239 (2018)
D. Ristè, J. G. van Leeuwen, H. S. Ku, K. W. Lehnert, and L. DiCarlo, Initialization by measurement of a superconducting quantum bit circuit, Phys. Rev. Lett. 109(5), 050507 (2012)
K. Geerlings, Z. Leghtas, I. M. Pop, S. Shankar, L. Frunzio, R. J. Schoelkopf, M. Mirrahimi, and M. H. Devoret, Demonstrating a driven reset protocol for a superconducting qubit, Phys. Rev. Lett. 110(12), 120501 (2013)
P. Magnard, P. Kurpiers, B. Royer, T. Walter, J. C. Besse, S. Gasparinetti, M. Pechal, J. Heinsoo, S. Storz, A. Blais, and A. Wallraff, Fast and unconditional all-microwave reset of a superconducting qubit, Phys. Rev. Lett. 121(6), 060502 (2018)
M. McEwen, D. Kafri, Z. Chen, J. Atalaya, K. Satzinger, et al., Removing leakage-induced correlated errors in superconducting quantum error correction, Nat. Commun. 12(1), 1761 (2021)
Y. Zhou, Z. Zhang, Z. Yin, S. Huai, X. Gu, X. Xu, J. Allcock, F. Liu, G. Xi, Q. Yu, H. Zhang, M. Zhang, H. Li, X. Song, Z. Wang, D. Zheng, S. An, Y. Zheng, and S. Zhang, Rapid and unconditional parametric reset protocol for tunable superconducting qubits, Nat. Commun. 12(1), 5924 (2021)
F. Motzoi, J. M. Gambetta, P. Rebentrost, and F. K. Wilhelm, Simple pulses for elimination of leakage in weakly nonlinear qubits, Phys. Rev. Lett. 103(11), 110501 (2009)
J. M. Gambetta, F. Motzoi, S. T. Merkel, and F. K. Wilhelm, Analytic control methods for high-fidelity unitary operations in a weakly nonlinear oscillator, Phys. Rev. A 83(1), 012308 (2011)
D. C. McKay, C. J. Wood, S. Sheldon, J. M. Chow, and J. M. Gambetta, Efficient Z gates for quantum computing, Phys. Rev. A 96(2), 022330 (2017)
E. Leonard, M. A. Beck, J. Nelson, B. Christensen, T. Thorbeck, et al., Digital coherent control of a superconducting qubit, Phys. Rev. Appl. 11(1), 014009 (2019)
J. Majer, J. M. Chow, J. M. Gambetta, J. Koch, B. R. Johnson, J. A. Schreier, L. Frunzio, D. I. Schuster, A. A. Houck, A. Wallraff, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, Coupling superconducting qubits via a cavity bus, Nature 449(7161), 443 (2007)
R. C. Bialczak, M. Ansmann, M. Hofheinz, E. Lucero, M. Neeley, A. D. O’Connell, D. Sank, H. Wang, J. Wenner, M. Steffen, A. N. Cleland, and J. M. Martinis, Quantum process tomography of a universal entangling gate implemented with Josephson phase qubits, Nat. Phys. 6(6), 409 (2010)
F. W. Strauch, P. R. Johnson, A. J. Dragt, C. J. Lobb, J. R. Anderson, and F. C. Wellstood, Quantum logic gates for coupled superconducting phase qubits, Phys. Rev. Lett. 91(16), 167005 (2003)
L. DiCarlo, J. M. Chow, J. M. Gambetta, L. S. Bishop, B. R. Johnson, D. I. Schuster, J. Majer, A. Blais, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, Demonstration of two-qubit algorithms with a superconducting quantum processor, Nature 460(7252), 240 (2009)
J. M. Martinis and M. R. Geller, Fast adiabatic qubit gates using only σz control, Phys. Rev. A 90(2), 022307 (2014)
R. Barends, C. Quintana, A. Petukhov, Y. Chen, D. Kafri, et al., Diabatic gates for frequency-tunable superconducting qubits, Phys. Rev. Lett. 123(21), 210501 (2019)
S. Li, A. D. Castellano, S. Wang, Y. Wu, M. Gong, et al., Realisation of highfidelity nonadiabatic CZ gates with superconducting qubits, npj Quantum Inf. 5, 84 (2019)
M. Rol, F. Battistel, F. Malinowski, C. Bultink, B. Tarasinski, R. Vollmer, N. Haider, N. Muthusubramanian, A. Bruno, B. M. Terhal, and L. DiCarlo, Fast, high-fidelity conditionalphase gate exploiting leakage interference in weakly anharmonic superconducting qubits, Phys. Rev. Lett. 123(12), 120502 (2019)
J. M. Chow, A. D. Corcoles, J. M. Gambetta, C. Rigetti, B. R. Johnson, J. A. Smolin, J. R. Rozen, G. A. Keefe, M. B. Rothwell, M. B. Ketchen, and M. Steffen, Simple all-microwave entangling gate for fixed-frequency superconducting qubits, Phys. Rev. Lett. 107(8), 080502 (2011)
S. Sheldon, E. Magesan, J. M. Chow, and J. M. Gambetta, Procedure for systematically tuning up cross-talk in the cross-resonance gate, Phys. Rev. A 93(6), 060302 (2016)
H. Paik, A. Mezzacapo, M. Sandberg, D. McClure, B. Abdo, A. Corcoles, O. Dial, D. Bogorin, B. Plourde, M. Steffen, A. W. Cross, J. M. Gambetta, and J. M. Chow, Experimental demonstration of a resonatorinduced phase gate in a multiqubit circuit-QED system, Phys. Rev. Lett. 117(25), 250502 (2016)
D. C. McKay, S. Filipp, A. Mezzacapo, E. Magesan, J. M. Chow, and J. M. Gambetta, Universal gate for fixed-frequency qubits via a tunable bus, Phys. Rev. Appl. 6(6), 064007 (2016)
S. A. Caldwell, N. Didier, C. A. Ryan, E. A. Sete, A. Hudson, et al., Parametrically activated entangling gates using transmon qubits, Phys. Rev. Appl. 10(3), 034050 (2018)
C. Song, K. Xu, H. Li, Y. R. Zhang, X. Zhang, W. Liu, Q. Guo, Z. Wang, W. Ren, J. Hao, H. Feng, H. Fan, D. Zheng, D. W. Wang, H. Wang, and S. Y. Zhu, Generation of multicomponent atomic Schrödinger cat states of up to 20 qubits, Science 365(6453), 574 (2019)
T. Hime, P. A. Reichardt, B. L. T. Plourde, T. L. Robertson, C. E. Wu, A. V. Ustinov, and J. Clarke, Solid-state qubits with current-controlled coupling, Science 314(5804), 1427 (2006)
A. O. Niskanen, K. Harrabi, F. Yoshihara, Y. Nakamura, S. Lloyd, and J. S. Tsai, Quantum coherent tunable coupling of superconducting qubits, Science 316(5825), 723 (2007)
S. H. W. van der Ploeg, A. Izmalkov, A. M. van den Brink, U. Hubner, M. Grajcar, E. Il’ichev, H. G. Meyer, and A. M. Zagoskin, Controllable coupling of superconducting flux qubits, Phys. Rev. Lett. 98(5), 057004 (2007)
R. Harris, A. J. Berkley, M. W. Johnson, P. Bunyk, S. Govorkov, M. C. Thom, S. Uchaikin, A. B. Wilson, J. Chung, E. Holtham, J. D. Biamonte, A. Y. Smirnov, M. H. S. Amin, and A. M. van den Brink, Sign- and magnitude-tunable coupler for superconducting flux qubits, Phys. Rev. Lett. 98(17), 177001 (2007)
T. Yamamoto, M. Watanabe, J. Q. You, Y. A. Pashkin, O. Astafiev, Y. Nakamura, F. Nori, and J. S. Tsai, Spectroscopy of superconducting charge qubits coupled by a Josephson inductance, Phys. Rev. B 77(6), 064505 (2008)
Y. Chen, C. Neill, P. Roushan, N. Leung, M. Fang, et al., Qubit architecture with high coherence and fast tunable coupling, Phys. Rev. Lett. 113(22), 220502 (2014)
S. J. Weber, G. O. Samach, D. Hover, S. Gustavsson, D. K. Kim, A. Melville, D. Rosenberg, A. P. Sears, F. Yan, J. L. Yoder, W. D. Oliver, and A. J. Kerman, Coherent coupled qubits for quantum annealing, Phys. Rev. Appl. 8(1), 014004 (2017)
Y. Lu, S. Chakram, N. Leung, N. Earnest, R. Naik, Z. Huang, P. Groszkowski, E. Kapit, J. Koch, and D. I. Schuster, Universal stabilization of a parametrically coupled qubit, Phys. Rev. Lett. 119(15), 150502 (2017)
F. Yan, P. Krantz, Y. Sung, M. Kjaergaard, D. L. Campbell, T. P. Orlando, S. Gustavsson, and W. D. Oliver, Tunable coupling scheme for implementing highfidelity two-qubit gates, Phys. Rev. Appl. 10(5), 054062 (2018)
P. Mundada, G. Zhang, T. Hazard, and A. Houck, Suppression of qubit crosstalk in a tunable coupling superconducting circuit, Phys. Rev. Appl. 12(5), 054023 (2019)
V. Negîrneac, H. Ali, N. Muthusubramanian, F. Battistel, R. Sagastizabal, M. S. Moreira, J. F. Marques, W. J. Vlothuizen, M. Beekman, C. Zachariadis, N. Haider, A. Bruno, and L. DiCarlo, High-fidelity controlled-z gate with maximal intermediate leakage operating at the speed limit in a superconducting quantum processor, Phys. Rev. Lett. 126(22), 220502 (2021)
B. Foxen, C. Neill, A. Dunsworth, P. Roushan, B. Chiaro, et al., Demonstrating a continuous set of two-qubit gates for near-term quantum algorithms, Phys. Rev. Lett. 125(12), 120504 (2020)
X. Li, T. Cai, H. Yan, Z. Wang, X. Pan, Y. Ma, W. Cai, J. Han, Z. Hua, X. Han, Y. Wu, H. Zhang, H. Wang, Y. Song, L. Duan, and L. Sun, Tunable coupler for realizing a controlled-phase gate with dynamically decoupled regime in a superconducting circuit, Phys. Rev. Appl. 14(2), 024070 (2020)
M. C. Collodo, J. Herrmann, N. Lacroix, C. K. Andersen, A. Remm, S. Lazar, J. C. Besse, T. Walter, A. Wallraff, and C. Eichler, Implementation of conditional phase gates based on tunable ZZ interactions, Phys. Rev. Lett. 125(24), 240502 (2020)
Y. Xu, J. Chu, J. Yuan, J. Qiu, Y. Zhou, L. Zhang, X. Tan, Y. Yu, S. Liu, J. Li, F. Yan, and D. Yu, High-fidelity, highscalability two-qubit gate scheme for superconducting qubits, Phys. Rev. Lett. 125(24), 240503 (2020)
Y. Sung, L. Ding, J. Braumuller, A. Vepsalainen, B. Kannan, et al., Realization of high-fidelity CZ and ZZ-free iswap gates with a tunable coupler, Phys. Rev. X 11(2), 021058 (2021)
J. Stehlik, D. Zajac, D. Underwood, T. Phung, J. Blair, S. Carnevale, D. Klaus, G. Keefe, A. Carniol, M. Kumph, M. Steffen, and O. E. Dial, Tunable coupling architecture for fixed-frequency transmon superconducting qubits, Phys. Rev. Lett. 127(8), 080505 (2021)
C. C. Bultink, B. Tarasinski, N. Haandbæk, S. Poletto, N. Haider, D. J. Michalak, A. Bruno, and L. DiCarlo, General method for extracting the quantum efficiency of dispersive qubit readout in circuit QED, Appl. Phys. Lett. 112(9), 092601 (2018)
A. P. M. Place, L. V. H. Rodgers, P. Mundada, B. M. Smitham, M. Fitzpatrick, et al., New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds, Nat. Commun. 12(1), 1779 (2021)
A. Somoroff, Q. Ficheux, R. A. Mencia, H. Xiong, R. V. Kuzmin, and V. E. Manucharyan, Millisecond coherence in a superconducting qubit, arXiv: 2103.08578 (2021)
C. Wang, X. Li, H. Xu, Z. Li, J. Wang, et al., Towards practical quantum computers: Transmon qubit with a lifetime approaching 0.5 milliseconds, npj Quantum Inf. 8, 3 (2022)
C. Müller, J. H. Cole, and J. Lisenfeld, Towards understanding two-level-systems in amorphous solids: Insights from quantum circuits, Rep. Prog. Phys. 82(12), 124501 (2019)
P. Klimov, J. Kelly, Z. Chen, M. Neeley, A. Megrant, et al., Fluctuations of energy-relaxation times in superconducting qubits, Phys. Rev. Lett. 121(9), 090502 (2018)
S. Schlör, J. Lisenfeld, C. Muller, A. Bilmes, A. Schneider, D. P. Pappas, A. V. Ustinov, and M. Weides, Correlating decoherence in transmon qubits: Low frequency noise by single fluctuators, Phys. Rev. Lett. 123(19), 190502 (2019)
J. J. Burnett, A. Bengtsson, M. Scigliuzzo, D. Niepce, M. Kudra, P. Delsing, and J. Bylander, Decoherence benchmarking of superconducting qubits, npj Quantum Inf. 5, 54 (2019)
T. Proctor, M. Revelle, E. Nielsen, K. Rudinger, D. Lobser, P. Maunz, R. Blume-Kohout, and K. Young, Detecting and tracking drift in quantum information processors, Nat. Commun. 11(1), 5396 (2020)
S. E. de Graaf, L. Faoro, L. B. Ioffe, S. Mahashabde, J. J. Burnett, T. Lindstrom, S. E. Kubatkin, A. V. Danilov, and A. Y. Tzalenchuk, Two-level systems in superconducting quantum devices due to trapped quasiparticles, Sci. Adv. 6(51), eabc5055 (2020)
D. Suter and G. A. Alvarez, Colloquium: Protecting quantum information against environmental noise, Rev. Mod. Phys. 88(4), 041001 (2016)
E. Paladino, Y. Galperin, G. Falci, and B. Altshuler, 1/f noise: Implications for solid-state quantum information, Rev. Mod. Phys. 86(2), 361 (2014)
J. Bylander, S. Gustavsson, F. Yan, F. Yoshihara, K. Harrabi, G. Fitch, D. G. Cory, Y. Nakamura, J. S. Tsai, and W. D. Oliver, Noise spectroscopy through dynamical decoupling with a superconducting flux qubit, Nat. Phys. 7(7), 565 (2011)
F. Yan, J. Bylander, S. Gustavsson, F. Yoshihara, K. Harrabi, D. G. Cory, T. P. Orlando, Y. Nakamura, J. S. Tsai, and W. D. Oliver, Spectroscopy of lowfrequency noise and its temperature dependence in a superconducting qubit, Phys. Rev. B 85(17), 174521 (2012)
F. Yan, S. Gustavsson, J. Bylander, X. Jin, F. Yoshihara, D. G. Cory, Y. Nakamura, T. P. Orlando, and W. D. Oliver, Rotating-frame relaxation as a noise spectrum analyser of a superconducting qubit undergoing driven evolution, Nat. Commun. 4(1), 2337 (2013)
F. Yoshihara, Y. Nakamura, F. Yan, S. Gustavsson, J. Bylander, W. D. Oliver, and J. S. Tsai, Flux qubit noise spectroscopy using Rabi oscillations under strong driving conditions, Phys. Rev. B 89(2), 020503 (2014)
C. Quintana, Y. Chen, D. Sank, A. Petukhov, T. White, et al., Observation of classical-quantum crossover of 1/f flux noise and its paramagnetic temperature dependence, Phys. Rev. Lett. 118(5), 057702 (2017)
Y. Sung, F. Beaudoin, L. M. Norris, F. Yan, D. K. Kim, J. Y. Qiu, U. von Lupke, J. L. Yoder, T. P. Orlando, S. Gustavsson, L. Viola, and W. D. Oliver, Non-Gaussian noise spectroscopy with a superconducting qubit sensor, Nat. Commun. 10(1), 3715 (2019)
F. T. Chong, D. Franklin, and M. Martonosi, Programming languages and compiler design for realistic quantum hardware, Nature 549(7671), 180 (2017)
D. M. Abrams, N. Didier, B. R. Johnson, M. P. Silva, and C. A. Ryan, Implementation of XY entangling gates with a single calibrated pulse, Nat. Electron. 3(12), 744 (2020)
X. Gu, J. Fernandez-Pendas, P. Vikstal, T. Abad, C. Warren, A. Bengtsson, G. Tancredi, V. Shumeiko, J. Bylander, G. Johansson, and A. F. Kockum, Fast multiqubit gates through simultaneous two-qubit gates, PRX Quantum 2(4), 040348 (2021)
C. Song, S. B. Zheng, P. Zhang, K. Xu, L. Zhang, Q. Guo, W. Liu, D. Xu, H. Deng, K. Huang, D. Zheng, X. Zhu, and H. Wang, Continuous-variable geometric phase and its manipulation for quantum computation in a superconducting circuit, Nat. Commun. 8(1), 1061 (2017)
Y. Kim, A. Morvan, L. B. Nguyen, R. K. Naik, C. Junger, L. Chen, J. M. Kreikebaum, D. I. Santiago, and I. Siddiqi, High-fidelity three-qubit iToffoli gate for fixed-frequency superconducting qubits, Nat. Phys. 18(7), 783 (2022)
J. Chu, X. He, Y. Zhou, J. Yuan, L. Zhang, et al., Scalable algorithm simplification using quantum AND logic, arXiv: 2112.14922 (2021)
A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, Surface codes: Towards practical large-scale quantum computation, Phys. Rev. A 86(3), 032324 (2012)
A. Cleland, An introduction to the surface code, SciPost Phys. Lect. Notes 49, 49 (2022)
S. Krinner, N. Lacroix, A. Remm, A. Di Paolo, E. Genois, C. Leroux, C. Hellings, S. Lazar, F. Swiadek, J. Herrmann, G. J. Norris, C. K. Andersen, M. Müller, A. Blais, C. Eichler, and A. Wallraff, Realizing repeated quantum error correction in a distance-three surface code, Nature 605(7911), 669 (2022)
Y. Zhao, Y. Ye, H. L. Huang, Y. Zhang, D. Wu, et al., Realization of an error-correcting surface code with superconducting qubits, Phys. Rev. Lett. 129(3), 030501 (2022)
R. Acharya, I. Aleiner, R. Allen, T. I. Andersen, M. Ansmann, et al., Suppressing quantum errors by scaling a surface code logical qubit, arXiv: 2207.06431 (2022)
A. P. Vepsäläinen, A. H. Karamlou, J. L. Orrell, A. S. Dogra, B. Loer, F. Vasconcelos, D. K. Kim, A. J. Melville, B. M. Niedzielski, J. L. Yoder, S. Gustavsson, J. A. Formaggio, B. A. VanDevender, and W. D. Oliver, Impact of ionizing radiation on superconducting qubit coherence, Nature 584(7822), 551 (2020)
M. McEwen, L. Faoro, K. Arya, A. Dunsworth, T. Huang, et al, Resolving catastrophic error bursts from cosmic rays in large arrays of superconducting qubits, Nat. Phys. 18(1), 107 (2022)
C. D. Wilen, S. Abdullah, N. A. Kurinsky, C. Stanford, L. Cardani, G. D’Imperio, C. Tomei, L. Faoro, L. B. Ioffe, C. H. Liu, A. Opremcak, B. G. Christensen, J. L. DuBois, and R. McDermott, Correlated charge noise and relaxation errors in superconducting qubits, Nature 594(7863), 369 (2021)
B. M. Terhal, J. Conrad, and C. Vuillot, Towards scalable bosonic quantum error correction, Quantum Sci. Technol. 5(4), 043001 (2020)
A. Joshi, K. Noh, and Y. Y. Gao, Quantum information processing with bosonic qubits in circuit QED, Quantum Sci. Technol. 6(3), 033001 (2021)
W. Cai, Y. Ma, W. Wang, C. L. Zou, and L. Sun, Bosonic quantum error correction codes in superconducting quantum circuits, Fundam. Res. 1(1), 50 (2021)
C. Wang, Y. Y. Gao, P. Reinhold, R. W. Heeres, N. Ofek, K. Chou, C. Axline, M. Reagor, J. Blumoff, K. M. Sliwa, L. Frunzio, S. M. Girvin, L. Jiang, M. Mirrahimi, M. H. Devoret, and R. J. Schoelkopf, A Schrodinger cat living in two boxes, Science 352(6289), 1087 (2016)
N. Ofek, A. Petrenko, R. Heeres, P. Reinhold, Z. Leghtas, B. Vlastakis, Y. Liu, L. Frunzio, S. M. Girvin, L. Jiang, M. Mirrahimi, M. H. Devoret, and R. J. Schoelkopf, Extending the lifetime of a quantum bit with error correction in superconducting circuits, Nature 536(7617), 441 (2016)
S. Puri, L. St-Jean, J. A. Gross, A. Grimm, N. E. Frattini, P. S. Iyer, A. Krishna, S. Touzard, L. Jiang, A. Blais, S. T. Flammia, and S. M. Girvin, Bias-preserving gates with stabilized cat qubits, Sci. Adv. 6(34), eaay5901 (2020)
A. Grimm, N. E. Frattini, S. Puri, S. O. Mundhada, S. Touzard, M. Mirrahimi, S. M. Girvin, S. Shankar, and M. H. Devoret, Stabilization and operation of a Kerrcat qubit, Nature 584(7820), 205 (2020)
J. M. Gertler, B. Baker, J. Li, S. Shirol, J. Koch, and C. Wang, Protecting a bosonic qubit with autonomous quantum error correction, Nature 590(7845), 243 (2021)