Skip to main content
Log in

Implementing Qubits with Superconducting Integrated Circuits

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Superconducting qubits are solid state electrical circuits fabricated using techniques borrowed from conventional integrated circuits. They are based on the Josephson tunnel junction, the only non-dissipative, strongly non-linear circuit element available at low temperature. In contrast to microscopic entities such as spins or atoms, they tend to be well coupled to other circuits, which make them appealling from the point of view of readout and gate implementation. Very recently, new designs of superconducting qubits based on multi-junction circuits have solved the problem of isolation from unwanted extrinsic electromagnetic perturbations. We discuss in this review how qubit decoherence is affected by the intrinsic noise of the junction and what can be done to improve it.

PACS: 03.67.-a, 03.65.Yz, 85.25.-j, 85.35.Gv

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information(Cambridge, 2000).

  2. M. Tinkham, Introduction to Superconductivity(Krieger, Malabar, 1985).

    Google Scholar 

  3. J. M. Martinis, M. H. Devoret, J. Clarke, Phys. Rev. Lett. 55, 1543 (1985); M. H. Devoret, J. M. Martinis, J. Clarke, Phys. Rev. Lett. 55, 1908 (1985); J. M. Martinis, M. H. Devoret and J. Clarke, Phys. Rev. 35, 4682 (1987).

  4. J. M. Martinis and M. Nahum, Phys Rev. B 48, 18316 (1993).

    Google Scholar 

  5. B. D. Josephson, in Superconductivity, R. D. Parks (ed.) (Marcel Dekker, New York, 1969).

    Google Scholar 

  6. K. K. Likharev, Dynamics of Josephson Junctions and Circuits(Gordon and Breach, New York, 1986).

    Google Scholar 

  7. I. Giaever, Phys. Rev. Lett. 5, 147, 464 (1960).

    Google Scholar 

  8. A. O. Caldeira and A. J. Leggett, Ann. Phys. (N.Y.) 149, 347 (1983); A. J. Leggett, J. Phys. CM 14, R415 (2002).

    Google Scholar 

  9. D. P. DiVincenzo, arXiv:quant-ph/0002077.

  10. R. P. Feynman, Lectures on Physics, Vol. 2, Chap. 23, (Addison-Wesley, Reading, 1964).

    Google Scholar 

  11. D. C. Mattis and J. Bardeen, Phys. Rev. 111, 412 (1958).

  12. P. G. de Gennes, Superconductivity of Metals and Alloys(Benjamin, New York, 1966).

    Google Scholar 

  13. J. M. Raimond, M. Brune, and S. Haroche, Rev. Mod. Phys. 73, 565 (2001).

    Google Scholar 

  14. J. M. Martinis and K. Osborne, in Quantum Information and Entanglement, eds. J. M. Raimond, D. Esteve, and J. Dalibard, Les Houches Summer School Series, arXiv:condmat/ 0402430.

  15. J. Clarke, Proc. IEEE 77, 1208 (1989).

    Google Scholar 

  16. D. J. Van Harlingen, B. L. T. Plourde, T. L. Robertson, P. A. Reichardt, and John Clarke, preprint.

  17. R. W. Simmonds, K. M. Lang, D. A. Hite, D. P. Pappas, and J. M. Martinis, accepted for publication in Phys. Rev. Lett.

  18. M. Büttiker, Phys. Rev. B 36, 3548 (1987).

    Google Scholar 

  19. V. Bouchiat, D. Vion, P. Joyez, D. Esteve, M. H. Devoret, Physica Scripta T 76, 165 (1998).

    Google Scholar 

  20. Y. Nakamura, Yu. A. Pashkin, and J. S. Tsai, Nature 398, 786 (1999).

    Google Scholar 

  21. Yu. Makhlin, G. Sch¨on, and A. Shnirman, Rev. Mod. Phys. 73, 357 (2001).

    Google Scholar 

  22. D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, and M. H. Devoret, Science 296, 286 (2002).

    Google Scholar 

  23. A. Barone and G. Paternò, Physics and Applications of the Josephson Effect(Wiley, New York, 1992).

    Google Scholar 

  24. S. Han, R. Rouse, and J. E. Lukens, Phys. Rev. Lett. 84, 1300 (2000); J. R. Friedman, V. Patel, W. Chen, S. K. Tolpygo, and J. E. Lukens, Nature 406, 43 (2000).

    Google Scholar 

  25. J. E. Mooij, T. P. Orlando, L. Levitov, Lin Tian, C. H. van der Wal, and S. Lloyd, Science 285, 1036 (1999); C. H. van der Wal, A. C. J. ter Haar, F. K. Wilhem, R. N. Schouten, C. Harmans, T. P. Orlando, S. Loyd, and J. E. Mooij, Science 290, 773 (2000).

    Google Scholar 

  26. J. M. Martinis, S. Nam, J. Aumentado, and C. Urbina, Phys. Rev. Lett. 89, 117901 (2002).

    Google Scholar 

  27. M. Steffen, J. Martinis, and I. L. Chuang, PRB 68, 224518 (2003).

  28. M. H. Devoret and R. J. Schoelkopf, Nature 406, 1039 (2002).

    Google Scholar 

  29. A. N. Korotkov and D. V. Averin, Phys. Rev. B 64, 165310 (2001).

    Google Scholar 

  30. A. Cottet, D. Vion, A. Aassime, P. Joyez, D. Esteve, and M. H. Devoret, Physica C 367, 197 (2002).

    Google Scholar 

  31. I. Siddiqi, R. Vijay, F. Pierre, C. M. Wilson, M. Metcalfe, C. Rigetti, L. Frunzio, and M. H. Devoret, cond-mat/0312623, submitted to Phys. Rev. Lett.

  32. D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, and M. H. Devoret, Fortschritte der Physik 51, 462 (2003).

    Google Scholar 

  33. I. Chiorescu, Y. Nakamura, C. J. P. M. Harmans, and J. E. Mooij, Science 299, 1869 (2003).

    Google Scholar 

  34. J. Mannik and J. E. Lukens, Phys. Rev. Lett. 92, 057004 (2004).

    Google Scholar 

  35. A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S. M. Girvin, R. J. Schoelkopf, condmat/0408367, accepted by Nature.

  36. A. Lupascu, C. J. M. Verwijs, R. N. Schouten, C. J. P. M. Harmans, J. E. Mooij, condmat/ 0311510, submitted to Phys. Rev. Lett.

  37. Variable electrostatic transformer: controllable coupling of two charge qubits, D. V. Averin, C. Bruder, Phys. Rev. Lett. 91, 057003 (2003).

    Google Scholar 

  38. A. Blais, A. Maassen van den Brink, A. M. Zagoskin, Phys. Rev. Lett. 90, 127901 (2003)

  39. A. Pashkin Yu, T. Yamamoto, O. Astafiev, Y. Nakamura, D. V. Averin, and J. S. Tsai, Nature 421(2003).

  40. J. B. Majer, Superconducting Quantum Circuits, PhD Thesis, TU Delft, (2002); J. B. Majer, F. G. Paauw, A. C. J. ter Haar, C. P. J. Harmans, and J. E. Mooij, arXiv:cond-mat/0308192.

  41. A. J. Berkley, H. Xu, R. C. Ramos, M. A. Gubrud, F. W. Strauch, P. R. Johnson, J. R. Anderson, A. J. Dragt, C. J. Lobb, and F. C. Wellstood, Science 300, 1548 (2003).

    Google Scholar 

  42. C. Rigetti and M. Devoret, unpublished.

  43. Y. Nakamura, A. Pashkin Yu, and J. S. Tsai, Phys. Rev. Lett. 88, 047901 (2002).

  44. D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, and M. H. Devoret, Forts. der Physik 51, 462 (2003); E. Collin, G. Ithier, A. Aassime, P. Joyez, D. Vion and D. Esteve, submitted.

    Google Scholar 

  45. J. Preskill, J. Proc. R. Soc. London Ser. A 454, 385 (1998).

    Google Scholar 

  46. B. Yurke and J. S. Denker, Phys. Rev. A 29, 1419 (1984).

  47. M. H. Devoret in "Quantum Fluctuations", S. Reynaud, E. Giacobino, J. Zinn-Justin (eds.) (Elsevier, Amsterdam, 1996), p. 351.

    Google Scholar 

  48. A. Cottet, Implementation of a quantum bit in a superconducting circuit, PhD Thesis, Universit ´e Paris 6, 2002.

  49. A. Abragam, Principles of Nuclear Magnetic Resonance(Oxford University Press, Oxford, 1985).

    Google Scholar 

  50. R. J. Schoelkopf, A. A. Clerk, S. M. Girvin, K. W. Lehnert, and M. H. Devoret. ar-Xiv:cond-mat/0210247.

  51. K. W. Lehnert, K. Bladh, L. F. Spietz, D. Gunnarsson, D. I. Schuster, P. Delsing, and R. J. Schoelkopf, Phys. Rev.Lett. 90, 027002 (2002).

    Google Scholar 

  52. J. M. Martinis, S. Nam, J. Aumentado, K. M. Lang, and C. Urbina, Phys. Rev. B 67, 462 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

devoret, M.H., Martinis, J.M. Implementing Qubits with Superconducting Integrated Circuits. Quantum Information Processing 3, 163–203 (2004). https://doi.org/10.1007/s11128-004-3101-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-004-3101-5

Navigation