Skip to main content
Log in

BiVO4/TiO2 heterojunction with rich oxygen vacancies for enhanced electrocatalytic nitrogen reduction reaction

  • Research article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

The large-scale production of ammonia mainly depends on the Haber-Bosch process, which will lead to the problems of high energy consumption and carbon dioxide emission. Electrochemical nitrogen fixation is considered to be an environmental friendly and sustainable process, but its efficiency largely depends on the activity and stability of the catalyst. Therefore, it is imperative to develop high-efficient electrocatalysts in the field of nitrogen reduction reaction (NRR). In this paper, we developed a BiVO4/TiO2 nanotube (BiVO4/TNT) heterojunction composite with rich oxygen vacancies as an electrocatalytic NRR catalyst. The heterojunction interface and oxygen vacancy of BiVO4/TNT can be the active site of N2 dynamic activation and proton transition. The synergistic effect of TiO2 and BiVO4 shortens the proton transport path and reduces the over potential of chemical reaction. BiVO4/TNT has high ammonia yield of 8.54 µg·h−1·cm−2 and high Faraday efficiency of 7.70% in −0.8 V vs. RHE in 0.1 M Na2SO4 solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Bhattacharya, D. E. Prokopchuk, and M. T. Mock, Exploring the role of pendant amines in transition metal complexes for the reduction of N2 to hydrazine and ammonia, Coord. Chem. Rev. 334, 67 (2017)

    Article  Google Scholar 

  2. J. R. Christianson, D. Zhu, R. J. Hamers, and J. R. Schmidt, Mechanism of N2 reduction to NH3 by aqueous solvated electrons, J. Phys. Chem. B 118(1), 195 (2014)

    Article  Google Scholar 

  3. B. Qin, Y. Li, Q. Zhang, G. Yang, H. Liang, and F. Peng, Understanding of nitrogen fixation electro catalyzed by molybdenum-iron carbide through the experiment and theory, Nano Energy 68, 104374 (2020)

    Article  Google Scholar 

  4. W. Zhao, S. Dou, K. Zhang, L. Wu, Q. Wang, D. Shang, and Q. Zhong, Promotion effect of S and N co-addition on the catalytic performance of V2O5/TiO2 for NH3-SCR of NOx, Chem. Eng. J. 364, 401 (2019)

    Article  Google Scholar 

  5. J. Zhao, Q. Ouyang, Q. Chen, and H. Lin, Simultaneous determination of amino acid nitrogen and total acid in soy sauce using near infrared spectroscopy combined with characteristic variables selection, Food Sci. Technol. Int. 19(4), 305 (2013)

    Article  Google Scholar 

  6. B. Cui, J. Zhang, S. Liu, X. Liu, W. Xiang, L. Liu, H. Xin, M. J. Lefler, and S. Licht, Electrochemical synthesis of ammonia directly from N2 and water over iron-based catalysts supported on activated carbon, Green Chem. 19(1), 298 (2017)

    Article  Google Scholar 

  7. W. Qiu, X. Y. Xie, J. Qiu, W. H. Fang, R. Liang, X. Ren, X. Ji, G. Cui, A. M. Asiri, G. Cui, B. Tang, and X. Sun, High-performance artificial nitrogen fixation at ambient conditions using a metal-free electrocatalyst, Nat. Commun. 9(1), 3485 (2018)

    Article  ADS  Google Scholar 

  8. Z. Cui, W. Du, C. Xiao, Q. Li, R. Sa, C. Sun, and Z. Ma, Enhancing hydrogen evolution of MoS2 Basal planes by combining single-boron catalyst and compressive strain, Front. Phys. 15(6), 63502 (2020)

    Article  ADS  Google Scholar 

  9. X. Chen, X. Zhao, Z. Kong, W. J. Ong, and N. Li, Unravelling the electrochemical mechanisms for nitrogen fixation on single transition metal atoms embedded in defective graphitic carbon nitride, J. Mater. Chem. A 6(44), 21941 (2018)

    Article  Google Scholar 

  10. Z. X. Xu, H. Song, X. Q. Deng, Y. Y. Zhang, M. Xue-Qin, S. Q. Tong, Z. X. He, Q. Wang, Y. W. Shao, and X. Hu, Dewatering of sewage sludge via thermal hydrolysis with ammonia-treated Fenton iron sludge as skeleton material, J. Hazard. Mater. 379, 120810 (2019)

    Article  Google Scholar 

  11. C. Liu, Q. Li, C. Wu, J. Zhang, Y. Jin, D. R. MacFarlane, and C. Sun, Single-boron catalysts for nitrogen reduction reaction, J. Am. Chem. Soc. 141(7), 2884 (2019)

    Article  Google Scholar 

  12. Q. Li, C. Liu, S. Qiu, F. Zhou, L. He, X. Zhang, and C. Sun, Exploration of iron borides as electrochemical catalysts for the nitrogen reduction reaction, J. Mater. Chem. A 7(37), 21507 (2019)

    Article  Google Scholar 

  13. Q. Li, S. Qiu, L. He, X. Zhang, and C. Sun, Impact of H-termination on the nitrogen reduction reaction of molybdenum carbide as an electrochemical catalyst, Phys. Chem. Chem. Phys. 20(36), 23338 (2018)

    Article  Google Scholar 

  14. H. Cheng, L. X. Ding, G. F. Chen, L. Zhang, J. Xue, and H. Wang, Molybdenum carbide nanodots enable efficient electrocatalytic nitrogen fixation under ambient conditions, Adv. Mater. 30(46), 1803694 (2018)

    Article  Google Scholar 

  15. X. Ren, J. Zhao, Q. Wei, Y. Ma, H. Guo, Q. Liu, Y. Wang, G. Cui, A. M. Asiri, B. Li, B. Tang, and X. Sun, High-performance N2-to-NH3 conversion electrocatalyzed by Mo2C nanorod, ACS Cent. Sci. 5(1), 116 (2019)

    Article  Google Scholar 

  16. Z. Sun, R. Huo, C. Choi, S. Hong, T. S. Wu, J. Qiu, C. Yan, Z. Han, Y. Liu, Y. L. Soo, and Y. Jung, Oxygen vacancy enables electrochemical N2 fixation over WO3 with tailored structure, Nano Energy 62, 869 (2019)

    Article  Google Scholar 

  17. P. Chen, N. Zhang, S. Wang, T. Zhou, Y. Tong, C. Ao, W. Yan, L. Zhang, W. Chu, C. Wu, and Y. Xie, Interfacial engineering of cobalt sulfide/graphene hybrids for highly efficient ammonia electrosynthesis, Proc. Natl. Acad. Sci. USA 116(14), 6635 (2019)

    Article  Google Scholar 

  18. M. Kitano, Y. Inoue, Y. Yamazaki, F. Hayashi, S. Kanbara, S. Matsuishi, T. Yokoyama, S. W. Kim, M. Hara, and H. Hosono, Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store, Nat. Chem. 4(11), 934 (2012)

    Article  Google Scholar 

  19. F. Zhou, L. M. Azofra, M. Ali, M. Kar, A. N. Simonov, C. McDonnell-Worth, C. Sun, X. Zhang, and D. R. Mac-Farlane, Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids, Energy Environ. Sci. 10(12), 2516 (2017)

    Article  Google Scholar 

  20. D. Wang, L. M. Azofra, M. Harb, L. Cavallo, X. Zhang, B. H. R. Suryanto, and D. R. MacFarlane, Energy-efficient nitrogen reduction to ammonia at low overpotential in aqueous electrolyte under ambient conditions, Chem.Sus.Chem. 11(19), 3416 (2018)

    Article  Google Scholar 

  21. A. R. Singh, B. A. Rohr, J. A. Schwalbe, M. Cargnello, K. Chan, T. F. Jaramillo, I. Chorkendorff, and J. K. Nørskov, Electrochemical ammonia synthesis — The selectivity challenge, ACS Catal. 7(1), 706 (2017)

    Article  Google Scholar 

  22. S. Z. Andersen, V. Čolić, S. Yang, J. A. Schwalbe, A. C. Nielander, J. M. McEnaney, K. Enemark-Rasmussen, J. G. Baker, A. R. Singh, B. A. Rohr, M. J. Statt, S. J. Blair, S. Mezzavilla, J. Kibsgaard, P. C. K. Vesborg, M. Cargnello, S. F. Bent, T. F. Jaramillo, I. E. L. Stephens, J. K. Nørskov, and I. Chorkendorff, A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements, Nature 570(7762), 504 (2019)

    Article  ADS  Google Scholar 

  23. J. Kibsgaard, J. K. Nørskov, and I. Chorkendorff, The Difficulty of Proving Electrochemical Ammonia Synthesis, ACS Energy Lett. 4(12), 2986 (2019)

    Article  Google Scholar 

  24. T. Chen, S. Liu, H. Ying, Z. Li, and J. Hao, Reactive ionic liquid enables the construction of 3D Rh particles with nanowire subunits for electrocatalytic nitrogen reduction, Chem. Asian J. 15(7), 1081 (2020)

    Article  ADS  Google Scholar 

  25. H. Xie, Q. Geng, X. Zhu, Y. Luo, L. Chang, X. Niu, X. Shi, A. M. Asiri, S. Gao, Z. Wang, and X. Sun, PdP2 nanoparticles-reduced graphene oxide for electrocatalytic N2 conversion to NH3 under ambient conditions, J. Mater. Chem. A 7(43), 24760 (2019)

    Article  Google Scholar 

  26. Z. Zhang, K. Yao, L. Cong, Z. Yu, L. Qu, and W. Huang, Facile synthesis of a Ru-dispersed N-doped carbon framework catalyst for electrochemical nitrogen reduction, Catal. Sci. Technol. 10(5), 1336 (2020)

    Article  Google Scholar 

  27. X. Zhao, Z. Yang, A. V. Kuklin, G. V. Baryshnikov, H. Ågren, W. Wang, X. Zhou, and H. Zhang, Potassium ions promote electrochemical nitrogen reduction on nano-Au catalysts triggered by bifunctional boron supramolecular assembly, J. Mater. Chem. A 8(26), 13086 (2020)

    Article  Google Scholar 

  28. D. Deng, K. S. Novoselov, Q. Fu, N. Zheng, Z. Tian, and X. Bao, Catalysis with two-dimensional materials and their heterostructures, Nat. Nanotechnol. 11(3), 218 (2016)

    Article  ADS  Google Scholar 

  29. D. Gao, Y. Zhang, Z. Zhou, F. Cai, X. Zhao, W. Huang, Y. Li, J. Zhu, P. Liu, F. Yang, G. Wang, and X. Bao, Enhancing CO2 electroreduction with the metal-oxide interface, J. Am. Chem. Soc. 139(16), 5652 (2017)

    Article  Google Scholar 

  30. Y. Guo, J. Zou, X. Shi, P. Rukundo, and Z. Wang, A Ni/CeO2-CDC-SiC catalyst with improved Coke resistance in CO2 reforming of methane, ACS Sustain. Chem. & Eng. 5(3), 2330 (2017)

    Article  Google Scholar 

  31. S. Xie, Y. Liu, J. Deng, J. Yang, X. Zhao, Z. Han, K. Zhang, Y. Lu, F. Liu, and H. Dai, Carbon monoxide oxidation over rGO-mediated gold/cobalt oxide catalysts with strong metal-support interaction, ACS Appl. Mater. Interfaces 12(28), 31467 (2020)

    Article  Google Scholar 

  32. H. C. Song, G. R. Lee, K. Jeon, H. Lee, S. W. Lee, Y. S. Jung, and J. Y. Park, Engineering nanoscale interfaces of metal/oxide nanowires to control catalytic activity, ACS Nano 14(7), 8335 (2020)

    Article  Google Scholar 

  33. J. Lv, S. Wu, Z. Tian, Y. Ye, J. Liu, and C. Liang, Construction of PdO-Pd interfaces assisted by laser irradiation for enhanced electrocatalytic N2 reduction reaction, J. Mater. Chem. A 7(20), 12627 (2019)

    Article  Google Scholar 

  34. B. Xu, L. Xia, F. Zhou, R. Zhao, H. Chen, T. Wang, Q. Zhou, Q. Liu, G. Cui, X. Xiong, F. Gong, and X. Sun, Enhancing Electrocatalytic, N2 reduction to NH3 by CeO2 nanorod with oxygen vacancies, ACS Sustain. Chem. & Eng. 7(3), 2889 (2019)

    Article  Google Scholar 

  35. W. Fu, P. Zhuang, M. OliverLam Chee, P. Dong, M. Ye, and J. Shen, Oxygen vacancies in Ta2O5 nanorods for highly efficient electrocatalytic N2 reduction to NH3 under ambient conditions, ACS Sustain. Chem. & Eng. 7(10), 9622 (2019)

    Article  Google Scholar 

  36. Y. Tong, H. Guo, D. Liu, X. Yan, P. Su, J. Liang, S. Zhou, J. Liu, G. Q. Lu, and S. X. Dou, Vacancy engineering of iron-doped W18O49 nanoreactors for low-barrier electrochemical nitrogen reduction, Angew. Chem. Int. Ed. 59(19), 7356 (2020)

    Article  Google Scholar 

  37. T. Wu, X. Zhu, Z. Xing, S. Mou, C. Li, Y. Qiao, Q. Liu, Y. Luo, X. Shi, Y. Zhang, and X. Sun, Greatly improving electrochemical N2 reduction over TiO2 nanoparticles by iron doping, Angew. Chem. Int. Ed. 58(51), 18449 (2019)

    Article  Google Scholar 

  38. T. Wu, W. Kong, Y. Zhang, Z. Xing, J. Zhao, T. Wang, X. Shi, Y. Luo, and X. Sun, Greatly enhanced electrocatalytic N2 reduction on TiO2 via V doping, Small Methods 3(11), 1900356 (2019)

    Article  Google Scholar 

  39. S. Cheng, Y. J. Gao, Y. L. Yan, X. Gao, S. H. Zhang, G. L. Zhuang, S. W. Deng, Z. Z. Wei, X. Zhong, and J. G. Wang, Oxygen vacancy enhancing mechanism of nitrogen reduction reaction property in Ru/TiO2, J. Energ. Chem. 39, 144 (2019)

    Article  Google Scholar 

  40. Z. Han, C. Choi, S. Hong, T. S. Wu, Y. L. Soo, Y. Jung, J. Qiu, and Z. Sun, Activated TiO2 with tuned vacancy for efficient electrochemical nitrogen reduction, Appl. Catal. B 257, 117896 (2019)

    Article  Google Scholar 

  41. B. Li, X. Zhu, J. Wang, R. Xing, Q. Liu, X. Shi, Y. Luo, S. Liu, X. Niu, and X. Sun, Ti3+ self-doped TiO2−x nanowires for efficient electrocatalytic N2 reduction to NH3, Chem. Commun. (Camb.) 56(7), 1074 (2020)

    Article  Google Scholar 

  42. Y. T. Liu, X. Chen, J. Yu, and B. Ding, Carbon-nanoplated CoS@TiO2 nanofibrous membrane: An interface-engineered heterojunction for high-efficiency electrocatalytic nitrogen reduction, Angew. Chem. Int. Ed. 58(52), 18903 (2019)

    Article  Google Scholar 

  43. M. M. Shi, D. Bao, B. R. Wulan, Y. H. Li, Y. F. Zhang, J. M. Yan, and Q. Jiang, Au sub-nanoclusters on TiO2 toward highly efficient and selective electrocatalyst for N2 conversion to NH3 at ambient conditions, Adv. Mater. 29(17), 1606550 (2017)

    Article  Google Scholar 

  44. J. Zhang, Y. Tian, T. Zhang, Z. Li, X. She, Y. Wu, Y. Wang, and J. Wu, Confinement of intermediates in blue TiO2 nanotube arrays boosts reaction rate of nitrogen electrocatalysis, Chem. Cat. Chem. 12(10), 2760 (2020)

    Google Scholar 

  45. P. Zhao, L. Zhang, J. Song, S. Wen, and Z. Cheng, Phosphorus cation substitution in TiO2 nanorods toward enhanced N2 electroreduction, Appl. Surf. Sci. 523, 146517 (2020)

    Article  Google Scholar 

  46. Q. Hao, C. Liu, G. Jia, Y. Wang, H. Arandiyan, W. Wei, and B. J. Ni, Catalytic reduction of nitrogen to produce ammonia by bismuth-based catalysts: State of the art and future prospects, Mater. Horiz. 7(4), 1014 (2020)

    Article  Google Scholar 

  47. L. Li, C. Tang, B. Xia, H. Jin, Y. Zheng, and S. Z. Qiao, Two-dimensional mosaic bismuth nanosheets for highly selective ambient electrocatalytic nitrogen reduction, ACS Catal. 9(4), 2902 (2019)

    Article  Google Scholar 

  48. J. M. Wu, Y. Chen, L. Pan, P. Wang, Y. Cui, D. Kong, L. Wang, X. Zhang, and J. J. Zou, Multi-layer mono-clinic BiVO4 with oxygen vacancies and V4+ species for highly efficient visible-light photoelectrochemical applications, Appl. Catal. B 221, 187 (2018)

    Article  Google Scholar 

  49. J. X. Yao, D. Bao, Q. Zhang, M. M. Shi, Y. Wang, R. Gao, J. M. Yan, and Q. Jiang, Tailoring oxygen vacancies of BiVO4 toward highly efficient noble-metal-free electro-catalyst for artificial N2 fixation under ambient conditions, Small Methods 3(6), 1800333 (2019)

    Article  Google Scholar 

  50. C. Ling, Y. Zhang, Q. Li, X. Bai, L. Shi, and J. Wang, New mechanism for N2 reduction: The essential role of surface hydrogenation, J. Am. Chem. Soc. 141(45), 18264 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51802126 and 52072152), the Jiangsu University Jinshan Professor Fund and Jiangsu Specially-Appointed Professor Fund, Open Fund from Guangxi Key Laboratory of Electrochemical Energy Materials. The authors also acknowledged the financial support by Guangdong Innovation Research Team for Higher Education (No. 2017KCXTD030) and High-level Talents Project of Dongguan University of Technology (No. KCYKYQD2017017).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yixian Liu, Fengling Zhou, Haitao Li or Chenghua Sun.

Additional information

Special Topic

Heterojunction and Its Applications (Ed. Chenghua Sun). This article can also be found at http://journal.hep.com.cn/fop/EN/10.1007/s11467-021-1067-8.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Deng, P., Wu, R. et al. BiVO4/TiO2 heterojunction with rich oxygen vacancies for enhanced electrocatalytic nitrogen reduction reaction. Front. Phys. 16, 53503 (2021). https://doi.org/10.1007/s11467-021-1067-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-021-1067-8

Keywords

Navigation