Skip to main content
Log in

Construction of multi-homojunction TiO2 nanotubes for boosting photocatalytic hydrogen evolution by steering photogenerated charge transfer

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

As an effective means to improve charge carrier separation efficiency and directional transport, the gradient doping of foreign elements to build multi-homojunction structures inside catalysts has received wide attentions. Herein, we reported a simple and robust method to construct multi-homojunctions in black TiO2 nanotubes by the gradient doping of Ni species through the diffusion of deposited Ni element on the top of black TiO2 nanotubes driven by a high temperature annealing process. The gradient Ni distribution created parts of different Fermi energy levels and energy band structures within the same black TiO2 nanotube, which subsequently formed two series of multi-homojunctions within it. This special multi-homojunction structure largely enhanced the charge carrier separation and transportation, while the low concentration of defect states near the surface layer further inhibited carrier recombination and facilitated the surface reaction. Thus, the B-TNT-2Ni sample with the optimized Ni doping concentration exhibited an enhanced hydrogen evolution rate of ∼ 1.84 mmol·g−1·h−1 under visible light irradiation without the assistance of noble-metal cocatalysts, ∼ four times higher than that of the pristine black TiO2 nanotube array. With the capability to create multi-homojunction structures, this approach could be readily applied to various dopant systems and catalyst materials for a broad range of technical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qi, Y. H.; Song, L. Z.; Ouyang, S. X.; Liang, X. C.; Ning, S. B.; Zhang, Q. Q.; Ye, J. H. Photoinduced defect engineering: Enhanced photothermal catalytic performance of 2D black ln2O3−x nanosheets with bifunctional oxygen vacancies. Adv. Mater. 2020, 32, 1903915.

    Article  CAS  Google Scholar 

  2. Huang, Y. Y.; Jian, Y. P.; Li, L. H.; Li, D.; Fang, Z. Y.; Dong, W. X.; Lu, Y. H.; Luo, B. F.; Chen, R. J.; Yang, Y. C. et al. A NIR-responsive phytic acid nickel biomimetic complex anchored on carbon nitride for highly efficient solar hydrogen production. Angew. Chem., Int. Ed. 2021, 60, 5245–5249.

    Article  CAS  Google Scholar 

  3. Yu, Z. X.; Sang, L. X.; Cao, A. R.; Gao, Y. L. Oriented electron tunneling transport in hierarchical Ag/SiO2/TiO2 nanobowl arrays for plasmonic solar water splitting. Nano Res. 2021, 15, 1593–1602.

    Article  Google Scholar 

  4. Gao, J. Q.; Xue, J. B.; Jia, S. F.; Shen, Q. Q.; Zhang, X. C.; Jia, H. S.; Liu, X. G.; Li, Q.; Wu, Y. C. Self-doping surface oxygen vacancy-induced lattice strains for enhancing visible light-driven photocatalytic H2 evolution over black TiO2. ACS Appl. Mater. Interfaces 2021, 13, 18758–18771.

    Article  CAS  Google Scholar 

  5. Zhu, Y. X.; Wan, T.; Wen, X. M.; Chu, D. W.; Jiang, Y. J. Tunable type I and II heterojunction of CoOx nanoparticles confined in g-C3N4 nanotubes for photocatalytic hydrogen production. Appl. Catal. B: Environ. 2019, 244, 814–822.

    Article  CAS  Google Scholar 

  6. Li, Y.; Xue, J. B.; Shen, Q. Q.; Jia, S. F.; Li, Q.; Li, Y. X.; Liu, X. G.; Jia, H. S. Construction of a ternary spatial junction in yolk-shell nanoreactor for efficient photo-thermal catalytic hydrogen generation. Chem. Eng. J. 2021, 423, 130188.

    Article  CAS  Google Scholar 

  7. Shen, Q. Q.; Xue, J. B.; Li, Y.; Gao, G. X.; Li, Q.; Liu, X. G.; Jia, H. S.; Xu, B. S.; Wu, Y. C.; Dillon, S. J. Construction of CdSe polymorphic junctions with coherent interface for enhanced photoelectrocatalytic hydrogen generation. Appl. Catal. B-Environ. 2021, 282, 119552.

    Article  CAS  Google Scholar 

  8. Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.

    Article  CAS  Google Scholar 

  9. Farkas, B.; Heszler, P.; Budai, J.; Oszkó, A.; Ottosson, M.; Geretovszky, Z. Optical, compositional and structural properties of pulsed laser deposited nitrogen-doped titanium-dioxide. Appl. Surf. Sci. 2018, 433, 149–154.

    Article  CAS  Google Scholar 

  10. Huang, H. N.; Shi, R.; Li, Z. H.; Zhao, J. Q.; Su, C. L.; Zhang, T. R. Triphase photocatalytic CO2 reduction over silver-decorated titanium oxide at a gas-water boundary. Angew. Chem., Int. Ed. 2022, 61, e202200802.

    CAS  Google Scholar 

  11. Song, H. B.; Zhou, G. W.; Wang, C. F.; Jiang, X. J.; Wu, C. C.; Li, T. D. Synthesis and photocatalytic activity of nanocrystalline TiO2 Co-doped with nitrogen and cobalt(II). Res. Chem. Intermed. 2013, 39, 747–758.

    Article  CAS  Google Scholar 

  12. Gao, J. Q.; Xue, J. B.; Shen, Q. Q.; Liu, T. W.; Zhang, X. C.; Liu, X. G.; Jia, H. S.; Li, Q.; Wu, Y. C. A promoted photocatalysis system trade-off between thermodynamic and kinetic via hierarchical distribution dual-defects for efficient H2 evolution. Chem. Eng. J. 2022, 431, 133281.

    Article  CAS  Google Scholar 

  13. Xue, J. B.; Shen, Q. Q.; Liang, W.; Liu, X. G.; Yang, F. Photosensitization of TiO2 nanotube arrays with CdSe nanoparticles and their photoelectrochemical performance under visible light. Electrochim. Acta 2013, 97, 10–16.

    Article  CAS  Google Scholar 

  14. Li, J. B.; Wu, X.; Liu, S. W. Fluorinated TiO2 hollow photocatalysts for photocatalytic applications. Acta Phys. Chim. Sin. 2021, 37, 2009038.

    Google Scholar 

  15. Wu, J.; Li, L. Y.; Li, X. A.; Min, X.; Xing, Y. A novel 2D graphene oxide modified α-AgVO3 nanorods: Design, fabrication, and enhanced visible-light photocatalytic performance. J. Adv. Ceram. 2022, 11, 308–320.

    Article  CAS  Google Scholar 

  16. Liu, L. F.; Zhang, J. L.; Tan, X. N.; Zhang, B. X.; Shi, J. B.; Cheng, X. Y.; Tan, D. X.; Han, B. X.; Zheng, L. R.; Zhang, F. Y. Supercritical CO2 produces the visible-light-responsive TiO2/COF heterojunction with enhanced electron-hole separation for high-performance hydrogen evolution. Nano Res. 2020, 13, 983–988.

    Article  CAS  Google Scholar 

  17. Kaur, N.; Ghosh, A.; Ahmad, M.; Sharma, D.; Singh, R.; Mehta, B. R. Increased visible light absorption and charge separation in 2D–3D In2S3−ZnO heterojunctions for enhanced photoelectrochemical water splitting. J. Alloys Compd. 2022, 903, 164007.

    Article  CAS  Google Scholar 

  18. Hong, S. J.; Lee, S.; Jang, J. S.; Lee, J. S. Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation. Energy Environ. Sci. 2011, 4, 1781–1787.

    Article  CAS  Google Scholar 

  19. Saito, R.; Miseki, Y.; Sayama, K. Highly efficient photoelectrochemical water splitting using a thin film photoanode of BiVO4/SnO2/WO3 multi-composite in a carbonate electrolyte. Chem. Commun. 2012, 48, 3833–3835.

    Article  CAS  Google Scholar 

  20. Li, Y. T.; Liu, Z. F.; Li, J. W.; Ruan, M. N.; Guo, Z. G. An effective strategy of constructing a multi-junction structure by integrating a heterojunction and a homojunction to promote the charge separation and transfer efficiency of WO3. J. Mater. Chem. A 2020, 8, 6256–6267.

    Article  CAS  Google Scholar 

  21. Wu, T. T.; Zhen, C.; Zhu, H. Z.; Wu, J. B.; Jia, C. X.; Wang, L. Z.; Liu, G.; Park, N. G.; Cheng, H. M. Gradient Sn-doped heteroepitaxial film of faceted rutile TiO2 as an electron selective layer for efficient perovskite solar cells. ACS Appl. Mater. Interfaces 2019, 11, 19638–19646.

    Article  CAS  Google Scholar 

  22. Abdi, F. F.; Han, L. H.; Smets, A. H. M.; Zeman, M.; Dam, B.; Van De Krol, R. Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nat. Commun. 2013, 4, 2195.

    Article  Google Scholar 

  23. Miao, Z. M.; Wang, G. L.; Li, L. J.; Wang, C.; Zhang, X. F. Fabrication of black TiO2/TiO2 homojunction for enhanced photocatalytic degradation. J. Mater. Sci. 2019, 54, 14320–14329.

    Article  CAS  Google Scholar 

  24. Liu, Y. C.; Ren, F.; Shen, S. H.; Chen, J. N.; Fu, Y. M.; Cai, G. X.; Wang, X. N.; Xing, Z.; Wu, L.; Zheng, X. D. et al. Vacancy-doped homojunction structural TiO2 nanorod photoelectrodes with greatly enhanced photoelectrochemical activity. Int. J. Hydrogen Energy 2018, 43, 2057–2063.

    Article  CAS  Google Scholar 

  25. Wang, M.; Ren, F.; Zhou, J. G.; Cai, G. X.; Cai, L.; Hu, Y. F.; Wang, D. N.; Liu, Y. C.; Guo, L. J.; Shen, S. H. N doping to ZnO nanorods for photoelectrochemical water splitting under visible light: Engineered impurity distribution and terraced band structure. Sci. Rep. 2015, 5, 12925.

    Article  CAS  Google Scholar 

  26. Huang, H. M.; Dai, B. Y.; Wang, W.; Lu, C. H.; Kou, J. H.; Ni, Y. R.; Wang, L. Z.; Xu, Z. Z. Oriented built-in electric field introduced by surface gradient diffusion doping for enhanced photocatalytic H2 evolution in CdS nanorods. Nano Lett. 2017, 17, 3803–3808.

    Article  CAS  Google Scholar 

  27. Mirzaei, A.; Eddah, M.; Roualdes, S.; Ma, D. L.; Chaker, M. Multiple-homojunction gradient nitrogen doped TiO2 for photocatalytic degradation of sulfamethoxazole, degradation mechanism, and toxicity assessment. Chem. Eng. J. 2021, 422, 130507.

    Article  CAS  Google Scholar 

  28. Meng, C. H.; Liu, Z. Y.; Zhang, T. R.; Zhai, J. Layered MoS2 nanoparticles on TiO2 nanotubes by a photocatalytic strategy for use as high-performance electrocatalysts in hydrogen evolution reactions. Green Chem. 2015, 17, 2764–2768.

    Article  CAS  Google Scholar 

  29. Cheng, G.; Liu, X.; Song, X. J.; Chen, X.; Dai, W. X.; Yuan, R. S.; Fu, X. Z. Visible-light-driven deep oxidation of NO over Fe doped TiO2 catalyst: Synergic effect of Fe and oxygen vacancies. Appl. Catal. B: Environ. 2020, 277, 119196.

    Article  CAS  Google Scholar 

  30. Hu, Y. X.; Pan, Y. Y.; Wang, Z. L.; Lin, T. E.; Gao, Y. Y.; Luo, B.; Hu, H.; Fan, F. T.; Liu, G.; Wang, L. Z. Lattice distortion induced internal electric field in TiO2 photoelectrode for efficient charge separation and transfer. Nat. Commun. 2020, 11, 2129.

    Article  CAS  Google Scholar 

  31. Anitha, B.; Khadar, M. A. Anatase-rutile phase transformation and photocatalysis in peroxide gel route prepared TiO2 nanocrystals: Role of defect states. Solid State Sci. 2020, 108, 106392.

    Article  CAS  Google Scholar 

  32. Liu, X. Y.; Ye, M.; Zhang, S. P.; Huang, G. C.; Li, C. H.; Yu, J. G.; Wong, P. K.; Liu, S. W. Enhanced photocatalytic CO2 valorization over TiO2 hollow microspheres by synergetic surface tailoring and Au decoration. J. Mater. Chem. A 2018, 6, 24245–24255.

    Article  CAS  Google Scholar 

  33. Chen, S. B.; Yang, Z.; Chen, J. D.; Liao, J. H.; Yang, S. Y.; Peng, F.; Ding, L. X.; Yang, G. X.; Zhang, S. S.; Fang, Y. P. Electron-rich interface of Cu-Co heterostructure nanoparticle as a cocatalyst for enhancing photocatalytic hydrogen evolution. Chem. Eng. J. 2022, 434, 134673.

    Article  CAS  Google Scholar 

  34. Jing, F.; Guo, Y. M.; Li, B.; Chen, Y. F.; Jia, C. M.; Li, J. W. Enhanced photocatalytic hydrogen production under visible light of an organic-inorganic hybrid material based on Enzo[1,2-b:4,5-b′]dithiophene polymer and TiO2. Chin. Chem. Lett. 2022, 33, 1303–1307.

    Article  CAS  Google Scholar 

  35. Liang, Y.; Li, W.; Wang, X.; Zhou, R.; Ding, H. TiO2−ZnO/Au ternary heterojunction nanocomposite: Excellent antibacterial property and visible-light photocatalytic hydrogen production efficiency. Ceram. Int. 2022, 48, 2826–2832.

    Article  CAS  Google Scholar 

  36. El-Shazly, A. N.; Hegazy, A. H.; El Shenawy, E. T.; Hamza, M. A.; Allam, N. K. Novel facet-engineered multi-doped TiO2 mesocrystals with unprecedented visible light photocatalytic hydrogen production. Sol. Energy Mater. Sol. Cells 2021, 220, 110825.

    Article  CAS  Google Scholar 

  37. Peng, C.; Wei, P.; Li, X. Y.; Liu, Y. P.; Cao, Y. H.; Wang, H. J.; Yu, H.; Peng, F.; Zhang, L. Y.; Zhang, B. S. et al. High efficiency photocatalytic hydrogen production over ternary Cu/TiO2@Ti3C2Tx enabled by low-work-function 2D titanium carbide. Nano Energy 2018, 53, 97–107.

    Article  CAS  Google Scholar 

  38. Jin, X. X.; Wang, R. Y.; Zhang, L. X.; Si, R.; Shen, M.; Wang, M.; Tian, J. J.; Shi, J. L. Electron configuration modulation of nickel single atoms for elevated photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2020, 59, 6827–6831.

    Article  CAS  Google Scholar 

  39. Wang, K. W.; Yang, L. M.; Wang, X.; Guo, L. P.; Cheng, G.; Zhang, C.; Jin, S. B.; Tan, B. E.; Cooper, A. Covalent triazine frameworks via a low-temperature polycondensation approach. Angew. Chem., Int. Ed. 2017, 56, 14149–14153.

    Article  CAS  Google Scholar 

  40. Meng, N. N.; Ren, J.; Liu, Y.; Huang, Y.; Petit, T.; Zhang, B. Engineering oxygen-containing and amino groups into two-dimensional atomically-thin porous polymeric carbon nitrogen for enhanced photocatalytic hydrogen production. Energy Environ. Sci. 2018, 11, 566–571.

    Article  CAS  Google Scholar 

  41. Yao, X. X.; Hu, X. L.; Zhang, W. J.; Gong, X. Y.; Wang, X. H.; Pillai, S. C.; Dionysiou, D. D.; Wang, D. W. Mie resonance in hollow nanoshells of ternary TiO2−Au−CdS and enhanced photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2020, 276, 119153.

    Article  CAS  Google Scholar 

  42. Kubelka, P. The Kubelka-Munk theory of reflectance. Zeit. Für Tekn. Physik 1931, 12, 593.

    Google Scholar 

  43. Tauc, J. Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 1968, 3, 37–46.

    Article  CAS  Google Scholar 

  44. Sun, M. M.; Chen, Z. Y.; Yu, J. Q. Highly efficient visible light induced photoelectrochemical anticorrosion for 304 SS by Ni-doped TiO2. Electrochim. Acta 2013, 109, 13–19.

    Article  CAS  Google Scholar 

  45. Gao, J. Q.; Shen, Q. Q.; Guan, R. F.; Xue, J. B.; Liu, X. G.; Jia, H. S.; Li, Q.; Wu, Y. C. Oxygen vacancy self-doped black TiO2 nanotube arrays by aluminothermic reduction for photocatalytic CO2 reduction under visible light illumination. J. CO2 Util. 2020, 35, 205–215.

    Article  CAS  Google Scholar 

  46. Begum, N. S.; Farveez Ahmed, H. M.; Gunashekar, K. R. Effects of Ni doping on photocatalytic activity of TiO2 thin films prepared by liquid phase deposition technique. Bull. Mater. Sci. 2008, 31, 747–751.

    Article  CAS  Google Scholar 

  47. Dong, Z. B.; Ding, D. Y.; Li, T.; Ning, C. Q. Ni-doped TiO2 nanotubes photoanode for enhanced photoelectrochemical water splitting. Appl. Surf. Sci. 2018, 443, 321–328.

    Article  CAS  Google Scholar 

  48. Yang, L. Q.; Huang, J. F.; Shi, L.; Cao, L. Y.; Zhou, W.; Chang, K.; Meng, X. G.; Liu, G. G.; Jie, Y. N.; Ye, J. H. Efficient hydrogen evolution over Sb doped SnO2 photocatalyst sensitized by eosin Y under visible light irradiation. Nano Energy 2017, 36, 331–340.

    Article  CAS  Google Scholar 

  49. Kronik, L.; Shapira, Y. Surface photovoltage phenomena: Theory, experiment, and applications. Surf. Sci. Rep. 1999, 37, 1–206.

    Article  CAS  Google Scholar 

  50. Meng, Z. S.; Zhou, B.; Xu, J.; Li, Y. X.; Hu, X. Y.; Tian, H. W. Heterostructured nitrogen and sulfur Co-doped black TiO2/g-C3N4 photocatalyst with enhanced photocatalytic activity. Chem. Res. Chin. Univ. 2020, 36, 1045–1052.

    Article  CAS  Google Scholar 

  51. Yang, C. Y.; Wang, Z.; Lin, T. Q.; Yin, H.; Lü, X. J.; Wan, D. Y.; Xu, T.; Zheng, C.; Lin, J. H.; Huang, F. Q. et al. Core-shell nanostructured “black” rutile titania as excellent catalyst for hydrogen production enhanced by sulfur doping. J. Am. Chem. Soc. 2013, 135, 17831–17838.

    Article  CAS  Google Scholar 

  52. Lu, W. H.; Wong, L. M.; Wang, S. J.; Zeng, K. Y. Local phenomena at grain boundaries: An alternative approach to grasp the role of oxygen vacancies in metallization of VO2. J. Materiomics. 2018, 4, 360–367.

    Article  Google Scholar 

  53. Sakamoto, K.; Hayashi, F.; Sato, K.; Hirano, M.; Ohtsu, N. XPS spectral analysis for a multiple oxide comprising NiO, TiO2, and NiTiO3. Appl. Surf. Sci. 2020, 526, 146729.

    Article  CAS  Google Scholar 

  54. Li, L. J.; Zhang, J.; Lei, J. L.; Xu, J.; Shang, B.; Liu, L.; Li, N. B.; Pan, F. S. O-vacancy-enriched NiO hexagonal platelets fabricated on Ni foam as a self-supported electrode for extraordinary pseudocapacitance. J. Mater. Chem. A 2018, 6, 7099–7106.

    Article  CAS  Google Scholar 

  55. Huang, Y.; Huang, X. L.; Lian, J. S.; Xu, D.; Wang, L. M.; Zhang, X. B. Self-assembly of ultrathin porous NiO nanosheets/graphene hierarchical structure for high-capacity and high-rate lithium storage. J. Mater. Chem. 2012, 22, 2844–2847.

    Article  CAS  Google Scholar 

  56. Wang, Z. F.; Shen, Q. Q.; Xue, J. B.; Guan, R. F.; Li, Q.; Liu, X. G.; Jia, H. S.; Wu, Y. C. 3D hierarchically porous NiO/NF electrode for the removal of chromium(VI) from wastewater by electrocoagulation. Chem. Eng. J. 2020, 402, 126151.

    Article  CAS  Google Scholar 

  57. Khan, H.; Swati, I. K. Fe3+-doped anatase TiO2 with d−d transition, oxygen vacancies and Ti3+ centers: Synthesis, characterization, UV-vis photocatalytic and mechanistic studies. Ind. Eng. Chem. Res. 2016, 55, 6619–6633.

    Article  CAS  Google Scholar 

  58. Chan, C. M.; Trigwell, S.; Duerig, T. Oxidation of an NiTi alloy. Surf. Interface Anal. 1990, 15, 349–354.

    Article  CAS  Google Scholar 

  59. Abdullah, S. A.; Sahdan, M. Z.; Nayan, N.; Embong, Z.; Hak, C. R. C.; Adriyanto, F. Neutron beam interaction with rutile TiO2 single crystal (111): Raman and XPS study on Ti3+-oxygen vacancy formation. Mater. Lett. 2020, 263, 127143.

    Article  CAS  Google Scholar 

  60. Lim, D. K.; Kwak, N. W.; Kim, J. S.; Kim, H.; Kim, B. K.; Kim, Y. C.; Jung, W. Ni diffusion in ceria lattice: A combined experimental and theoretical study. Acta Mater. 2021, 219, 117252.

    Article  CAS  Google Scholar 

  61. Cheng, M.; Yang, L.; Li, H. Y.; Bai, W.; Xiao, C.; Xie, Y. Constructing charge transfer channel between dopants and oxygen vacancies for enhanced visible-light-driven water oxidation. Nano Res. 2021, 14, 3365–3371.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support is gratefully acknowledged from the National Natural Science Foundation of China (NSFC) (Nos. 62004137, 21878257, and 21978196), the Natural Science Foundation (NSF) of Shanxi Province (No. 20210302123102), the Key Research and Development Program of Shanxi Province (No. 201803D421079), the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (No. 2019L0156), the Research Project Supported by Shanxi Scholarship Council of China (No. 2020-050), the Fundamental Research Funds for the Central Universities (No. 2682021CX116), and Sichuan Science and Technology Program (No. 2020YJ0259).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinbo Xue, Qi Li or Qianqian Shen.

Electronic Supplementary Material

12274_2022_5050_MOESM1_ESM.pdf

Construction of multi-homojunction TiO2 nanotubes for boosting photocatalytic hydrogen evolution by steering photogenerated charge transfer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, J., Jiang, S., Lei, C. et al. Construction of multi-homojunction TiO2 nanotubes for boosting photocatalytic hydrogen evolution by steering photogenerated charge transfer. Nano Res. 16, 2259–2270 (2023). https://doi.org/10.1007/s12274-022-5050-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5050-7

Keywords

Navigation