Skip to main content
Log in

Electronic structure regulation and built-in electric field synergistically strengthen photocatalytic nitrogen fixation performance on Ti-BiOBr/TiO2 heterostructure

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

At present, industrial synthetic ammonia was still obtained through the Hubble-Bosch process, with large energy consumption. It is a research hotspot to realize green synthetic ammonia by using solar energy. The difficulty of photocatalytic ammonia synthesis was that the photo-excited electrons have not enough energy to active N≡N. In this study, Ti was doped into BiOBr by one-step hydrothermal method, which was oxidized into TiO2 when the doping amount reaches the maximum, in situ forming Ti0.31B0.69OB/TiO2 composites. Benefiting from the synergistic effect of Ti doping and S-scheme heterojunction, the synthetic ammonia efficiency of Ti0.31B0.69OB/TiO2-11.96 reached 1.643 mmol·g−1cat at mild conditions and without hole scavenger for up to 7 h, the efficiency of synthetic ammonia is 115 times, 10.5 times and 3.3 times of that of BiOBr, Ti0.31B0.69OB and TiO2, respectively. Specifically, DFT calculation confirms that Ti doping accurately refine the electronic structure of BiOBr, facilitate nitrogen adsorption activation and reduce hydrogenation reaction energy barrier, thus accelerating the reaction kinetics of photocatalytic nitrogen reduction (NRR). Meanwhile, constructing S-scheme heterojunction boosts the separation and transfer of photogenerated electron–hole pairs, improving the reduction ability of electrons in the conduction band of TiO2 and the oxidation ability of holes in the valence band of Ti0.31B0.69OB.

Graphical abstract

摘要

工业合成氨采用Haber–Bosch工艺,需要在高温(300–500 ℃)、高压(15–25 MPa)下进行,能耗高且会产生大量的温室气体。与Haber–Bosch法相比,光催化合成氨可在常温、常压下进行,是一种能耗低、操作安全,且无CO2排放的绿色工艺。光催化固氮技术已成为当前催化领域的研究热点,是一种有望替代传统的哈伯法的新兴固氮技术。在本研究中,我们通过一步水热法将Ti掺杂取代BiOBr结构中的Bi原子,进一步增加Ti元素的掺杂量原位形成Ti0.31B0.69OB/TiO2异质结。Ti掺杂和构建异质界面的协同作用下,在不添加牺牲剂的情况下光照7小时,Ti0.31B0.69OB/TiO2的合成氨效率高达1.643 mmol·g−1cat,分别是BiOBr、Ti0.31B0.69OB和TiO2合成氨效率的115倍、10.5倍和3.3倍。DFT计算证实,Ti掺杂精准可调控BiOBr的电子结构,从而有效增强Bi位点对氮气(N2)在催化剂表面的吸附活化、降低活化氮分子(·N2)氢化反应的能垒,加速光催化氮还原(NRR)的反应动力学。同时,构建S-型异质结构可降低光生电子-空穴重组、促进电子-空穴的分离和转移,从而提高TiO2导带电子的还原能力和Ti0.31B0.69OB价带空穴的氧化能力。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1

Similar content being viewed by others

References

  1. Yapicioglu A, Dincer I. A review on clean ammonia as a potential fuel for power generator. Renew Sust Energy Rev. 2019;103:96. https://doi.org/10.1016/j.rser.2018.12.023.

    Article  CAS  Google Scholar 

  2. Shang SS, Xiong W, Yang C, Johannessen B, Liu RG, Hsu HY, Gu QF, Leung MK, Shang J. Atomically dispersed iron metal site in a porphyrin-based metal-organic framework for photocatalytic nitrogen fixation. ACS Nano. 2021;15:9670. https://doi.org/10.1021/acsnano.0c10947.

    Article  CAS  PubMed  Google Scholar 

  3. Chen C, Zhu XR, Wen XJ, Zhou YY, Zhou L, Li H, Tao L, Li QL, Du SQ, Liu TT. Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions. Nat Chem. 2020;12:717. https://doi.org/10.1021/acsnano.0c10947.

    Article  CAS  PubMed  Google Scholar 

  4. Ghavam S, Vahdati M, Wilson I, Styring P. Sustainable ammonia production processes. Front Energy Res. 2021;9:34. https://doi.org/10.3389/fenrg.2021.580808.

    Article  Google Scholar 

  5. Han Q, Jiao HM, Xiong LQ, Tang JW. Progress and challenges in photocatalytic ammonia synthesis. Mater Adv. 2021;2:564. https://doi.org/10.1039/D0MA00590H.

    Article  CAS  Google Scholar 

  6. Bo YA, Wang HY, Lin YX, Yang T, Ye R, Li Y, Hu CY, Du PY, Hu YG, Liu Z. Altering hydrogenation pathways in photocatalytic nitrogen fixation by tuning local electronic structure of oxygen vacancy with dopant. Angew Chem Int Ed. 2021;60:16085. https://doi.org/10.1002/anie.202104001.

    Article  CAS  Google Scholar 

  7. Li J, Li H, Zhan GM, Zhang LZ. Solar water splitting and nitrogen fixation with layered bismuth oxyhalides. Acc Chem Res. 2017;50:112. https://doi.org/10.1021/acs.accounts.6b00523.

    Article  CAS  PubMed  Google Scholar 

  8. Li JD, Zheng M, Wei F, Dong CC, Xiu ZY, Mu W, Zhou X, Ding YA, Han XJ. Fe doped InVO4 nanosheets with rich surface oxygen vacancies for enhanced electrochemical nitrogen fixation. Chem Eng J. 2022;431:133383. https://doi.org/10.1016/j.cej.2021.133383.

    Article  CAS  Google Scholar 

  9. Deng Y, Xiao ZY, Wang ZC, Lai JP, Liu XB, Zhang D, Han Y, Li SX, Sun W, Wang L. The rational adjusting of proton-feeding by Pt-doped FeP/C hollow nanorod for promoting nitrogen reduction kinetics. Appl Catal B: Environ. 2021;291:120047. https://doi.org/10.1016/j.apcatb.2021.120047.

    Article  CAS  Google Scholar 

  10. Shi R, Zhao YX, Waterhouse GI, Zhang S, Zhang TR. Defect engineering in photocatalytic nitrogen fixation. ACS Catal. 2019;9:9739. https://doi.org/10.1021/acscatal.9b03246.

    Article  CAS  Google Scholar 

  11. Wang GA, Huo TT, Deng QH, Yu F, Xia YG, Li HP, Hou WG. Surface-layer bromine doping enhanced generation of surface oxygen vacancies in bismuth molybdate for efficient photocatalytic nitrogen fixation. Appl Catal B: Environ. 2022;310:121319. https://doi.org/10.1016/j.apcatb.2022.121319.

    Article  CAS  Google Scholar 

  12. Xu FY, Meng K, Cao S, Jiang CH, Chen T, Xu JS, Yu JG. Step-by-step mechanism insights into the TiO2/Ce2S3 S-scheme photocatalyst for enhanced aniline production with water as a proton source. ACS Catal. 2021;12:164. https://doi.org/10.1021/acscatal.1c04903.

    Article  CAS  Google Scholar 

  13. Wu JH, Zhao W, Chen M, Liu CX, Chen J, Chen Z. Recent advance in visible-light-driven photocatalysis on lead-free halide perovskites. Chin J Rare Met. 2022;46:96. https://doi.org/10.13373/j.cnki.cjrm.XY21040007.

  14. Xu QL, Zhang LY, Cheng B, Fan JJ, Yu JG. S-scheme heterojunction photocatalyst. Chem. 2020;6:1543. https://doi.org/10.1016/j.chempr.2020.06.010.

    Article  CAS  Google Scholar 

  15. Wang TY, Feng CT, Liu JQ, Wang DJ, Hu HM, Hu J, Chen Z, Xue GL. Bi2WO6 hollow microspheres with high specific surface area and oxygen vacancies for efficient photocatalysis N2 fixation. Chem Eng J. 2021;414:128827. https://doi.org/10.1016/j.cej.2021.128827.

    Article  CAS  Google Scholar 

  16. Zhao K, Zhang LZ, Wang JJ, Li QX, He WW, Yin JJ. Surface structure-dependent molecular oxygen activation of BiOCl single-crystalline nanosheets. J Am Chem Soc. 2013;135:15750. https://doi.org/10.1021/ja4092903.

    Article  CAS  PubMed  Google Scholar 

  17. Wang XJ, Zhao Y, Li FT, Dou LJ, Li YP, Zhao J, Hao YJ. A chelation strategy for in-situ constructing surface oxygen vacancy on {001} facets exposed BiOBr nanosheets. Sci Rep. 2016;6:1. https://doi.org/10.1038/srep24918.

    Article  CAS  Google Scholar 

  18. Zhang G, Hu ZY, Sun M, Liu Y, Liu LM, Liu HJ, Huang CP, Qu JH, Li JH. Formation of Bi2WO6 bipyramids with vacancy pairs for enhanced solar-driven photoactivity. Adv Funct Mater. 2015;25:3726. https://doi.org/10.1002/adfm.201501009.

    Article  CAS  Google Scholar 

  19. Ye LQ, Zan L, Tian LH, Peng TY, Zhang JJ. The {001} facets-dependent high photoactivity of BiOCl nanosheets. Chem Commun. 2011;47:6951. https://doi.org/10.1039/C1CC11015B.

    Article  CAS  Google Scholar 

  20. Sun SM, Wang WZ. Advanced chemical compositions and nanoarchitectures of bismuth based complex oxides for solar photocatalytic application. RSC Adv. 2014;4:47136. https://doi.org/10.1039/C4RA06419D.

    Article  ADS  Google Scholar 

  21. Li J, Yu Y, Zhang LZ. Bismuth oxyhalide nanomaterials: layered structures meet photocatalysis. Nanoscale. 2014;6:8473. https://doi.org/10.1039/C4NR02553A.

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Cheng HF, Huang BB, Dai Y. Engineering BiOX (X= Cl, Br, I) nanostructures for highly efficient photocatalytic applications. Nanoscale. 2014;6:2009. https://doi.org/10.1039/C3NR05529A.

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Liu Y, Hu ZF, Yu J. Fe enhanced visible-light-driven nitrogen fixation on BiOBr nanosheets. Chem Mater. 2020;32:1488. https://doi.org/10.1021/acs.chemmater.9b04448.

    Article  CAS  Google Scholar 

  24. Cai YT, Song J, Liu XY, Yin X, Li XR, Yu JY, Ding B. Soft BiOBr@TiO2 nanofibrous membranes with hierarchical heterostructures as efficient and recyclable visible-light photocatalysts. Environ Sci: Nano. 2018;5:2631. https://doi.org/10.1039/C8EN00866C.

    Article  CAS  Google Scholar 

  25. Meng QQ, Lv CD, Sun JX, Hong WZ, Xing WN, Qiang LS, Chen G, Jin XL. High-efficiency Fe-mediated Bi2MoO6 nitrogen-fixing photocatalyst: reduced surface work function and ameliorated surface reaction. Appl Catal B: Environ. 2019;256:117781. https://doi.org/10.1016/j.apcatb.2019.117781.

    Article  CAS  Google Scholar 

  26. Huang WM, Hua X, Zhao YP, Li K, Tang LP, Zhou M, Cai ZS. Enhancement of visible-light-driven photocatalytic performance of BiOBr nanosheets by Co2+ doping. J Mater Sci: Mater Electron. 2019;30:14967. https://doi.org/10.1007/s10854-019-01869-x.

    Article  CAS  Google Scholar 

  27. Yang J, Liu TY, Zhou HF, Cao W, Chen C, HeX JCY, Li YF, Wang YP. In situ conversion of typical type-I MIL-125 (Ti)/BiOBr into type-II heterostructure photocatalyst via MOF self-sacrifice: photocatalytic mechanism and theoretical study. J Alloys Compd. 2022;900:163440. https://doi.org/10.1016/j.jallcom.2021.163440.

    Article  CAS  Google Scholar 

  28. Xu C, Zhou Q, Huang WY, Yang K, Zhang YC, Liang TX, Liu ZQ. Constructing Z-scheme β-Bi2O3/ZrO2 heterojunctions with 3D mesoporous SiO2 nanospheres for efficient antibiotic remediation via synergistic adsorption and photocatalysis. Rare Met. 2022;41:2094. https://doi.org/10.1007/s12598-021-01897-9.

  29. Yu Y, Cao CY, Liu H, Li P, Wei FF, Jiang Y, Song WG. A Bi/BiOCl heterojunction photocatalyst with enhanced electron–hole separation and excellent visible light photodegrading activity. J Mater Chem A. 2014;2:1677. https://doi.org/10.1039/C3TA14494A.

    Article  CAS  Google Scholar 

  30. Cao F, Wang JM, Wang YA, Zhou J, LiS QGW, Fan WQ. An in situ Bi-decorated BiOBr photocatalyst for synchronously treating multiple antibiotics in water. Nanoscale Adv. 2019;1:1124. https://doi.org/10.1039/C8NA00197A.

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Li K, Huang ZY, Zeng XQ, Huang BB, Gao SM, Lu J. Synergetic effect of Ti3+ and oxygen doping on enhancing photoelectrochemical and photocatalytic properties of TiO2/g-C3N4 heterojunctions. ACS Appl Mater Interfaces. 2017;9:11577. https://doi.org/10.1021/acsami.6b16191.

    Article  CAS  PubMed  Google Scholar 

  32. Li JF, Li ZY, Liu XM, Li CY, Zheng YF, Yeung KWK, Cui ZD, Liang YQ, Zhu SL, Hu WB, Qi YJ, Zhang TJ, Wang XB, Wu SL. Interfacial engineering of Bi2S3/Ti3C2Tx MXene based on work function for rapid photo-excited bacteria-killing. Nat Commun. 2021;12:1224. https://doi.org/10.1038/s41467-021-21435-6.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Parnicka P, Lisowski W, Klimczuk T, Mikolajczyk A, Zaleska-Medynska A. A novel (Ti/Ce)UiO-X MOFs@TiO2 heterojunction for enhanced photocatalytic performance: boosting via Ce4+/Ce3+ and Ti4+/Ti3+ redox mediators. Appl Catal B: Environ. 2022;310:121349. https://doi.org/10.1016/j.apcatb.2022.121349.

    Article  CAS  Google Scholar 

  34. Guo ML, Wan SP, Li CL, Zhang K. Graphene oxide as a hole extraction layer loaded on BiVO4 photoanode for highly efficient photoelectrochemical water splitting. Rare Met. 2022;41:3795–3802. https://doi.org/10.1007/s12598-022-02014-0

  35. Bu YY, Chen ZY. Effect of oxygen-doped C3N4 on the separation capability of the photoinduced electron-hole pairs generated by O-C3N4@TiO2 with quasi-shell-core nanostructure. Electrochim Acta. 2014;144:42. https://doi.org/10.1016/j.electacta.2014.08.095.

    Article  CAS  Google Scholar 

  36. Li JH, Shen B, Hong ZH, Lin BZ, Gao BF, Chen YL. A facile approach to synthesize novel oxygen-doped g-C3N4 with superior visible-light photoreactivity. Chem Commun. 2012;48:12017. https://doi.org/10.1039/C2CC35862J.

    Article  CAS  Google Scholar 

  37. Xue C, Zhang TX, Ding SJ, Wei JJ, Yang GD. Anchoring tailored low-index faceted BiOBr nanoplates onto TiO2 nanorods to enhance the stability and visible-light-driven catalytic activity. ACS Appl Mater Interfaces. 2017;9:16091. https://doi.org/10.1021/acsami.7b00433.

    Article  CAS  PubMed  Google Scholar 

  38. Huang YW, Zhu YS, Chen SJ, Xie XQ, Wu ZJ, Zhang N. Schottky junctions with Bi cocatalyst for taming aqueous phase N2 reduction toward enhanced solar ammonia production. Adv Sci. 2021;8:2003626. https://doi.org/10.1002/advs.202003626.

    Article  CAS  Google Scholar 

  39. Chen LW, Hao YC, Guo Y, Zhang QH, Li JN, Gao WY, Ren LT, Su X, Hu LY, Zhang N, Li SW, Feng X, Gu L, Zhang YW, Yin AX, Wang B. Metal-organic framework membranes encapsulating gold nanoparticles for direct plasmonic photocatalytic nitrogen fixation. J Am Chem Soc. 2021;143:5727. https://doi.org/10.1021/jacs.0c13342.

    Article  CAS  PubMed  Google Scholar 

  40. Gh E, Shaobin W, Hongqi S, Mika S. Core/shell FeVO4@BiOCl heterojunction as a durable heterogeneous Fenton catalyst for the efficient sonophotocatalytic degradation of p-nitrophenol. Sep Purif Technol. 2020;231:115915. https://doi.org/10.1016/j.seppur.2019.115915.

    Article  CAS  Google Scholar 

  41. Zhang GA, Cheng YF. Micro-electrochemical characterization and Mott–Schottky analysis of corrosion of welded X70 pipeline steel in carbonate/bicarbonate solution. Electrochim Acta. 2009;55:316. https://doi.org/10.1016/j.electacta.2009.09.001.

    Article  CAS  Google Scholar 

  42. Ye J, Zhang YY, Wang J, Liu S, Chang YH, Xu XP, Feng CT, Xu J, Guo L, Xu JT. Photo-Fenton and oxygen vacancies’ synergy for enhancing catalytic activity with S-scheme FeS2/Bi2WO6 heterostructure. Catal Sci Technol. 2022;12:4228. https://doi.org/10.1039/D2CY00610C.

    Article  CAS  Google Scholar 

  43. Yan R, Zada A, Sun L, Li ZJ, Mu ZY, Chen SY, Yang F, Sun JH, Bai LL, Qu Y, Jing LQ. Comparative study of metal oxides and phosphate modification with different mechanisms over g-C3N4 for visible-light photocatalytic degradation of metribuzin. Rare Met. 2022;41(1):155. https://doi.org/10.1007/s12598-021-01857-3

  44. Chen L, He XX, Gong ZH, Li JL, Liao Y, Li XT, Ma J. Significantly improved photocatalysis-self-Fenton degradation performance over g-C3N4 via promoting Fe(III)/Fe(II) cycle. Rare Met. 2022;41(7):2429. https://doi.org/10.1007/s12598-022-01963-w.

    Article  CAS  Google Scholar 

  45. Niu L, Wang D, Xu K, Hao W, An L, Kang Z, Sun Z. Tuning the performance of nitrogen reduction reaction by balancing the reactivity of N2 and the desorption of NH3. Nano Res. 2021;14:4093. https://doi.org/10.1007/s12274-021-3348-5.

    Article  ADS  CAS  Google Scholar 

  46. Niu L, Liu Z, Liu G, Li M, Zong X, Wang D, An L, Qu D, Sun X, Wang XJNR. Surface hydrophobic modification enhanced catalytic performance of electrochemical nitrogen reduction reaction. Nano Res. 2022;15:3886. https://doi.org/10.1007/s12274-021-4015-6.

    Article  ADS  CAS  Google Scholar 

  47. Qiu JY, Feng HZ, Chen ZH, Ruan SH, Chen YP, Xu TT, Su JY, Ha EN, Wang LY. Selective introduction of surface defects in anatase TiO2 nanosheets for highly efficient photocatalytic hydrogen generation. Rare Met. 2022;41(6):2074. https://doi.org/10.1007/s12598-021-01929-4.

    Article  CAS  Google Scholar 

  48. Li Z, Wu Z, He R, Wan L, Zhang S. In2O3-x(OH)y/Bi2MoO6 S-scheme heterojunction for enhanced photocatalytic performance. J Mater Sci Technol. 2020;56:151. https://doi.org/10.1016/j.jmst.2020.02.061.

    Article  CAS  Google Scholar 

  49. Wu Y, Mao S, Liu C, Pei F, Wang F, Hao Q, Xia M, Lei W. Enhanced degradation of chloramphenicol through peroxymonosulfate and visible light over Z-scheme photocatalysts: synergetic performance and mechanism insights. J Colloid Interface Sci. 2022;608:322. https://doi.org/10.1016/j.jcis.2021.09.197.

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Cheng L, Yue X, Fan J, Xiang Q. Site-specific electron-driving observations of CO2-to-CH4 photoreduction on Co-doped CeO2/Crystalline carbon nitride S-scheme heterojunctions. Adv Mater. 2022;34:2200929. https://doi.org/10.1002/adma.202200929.

    Article  CAS  Google Scholar 

  51. Zulfiqar S, Liu S, Rahman N, Tang H, Shah S, Yu X, Liu Q. Construction of S-scheme MnO2@ CdS heterojunction with core–shell structure as H2 production photocatalyst. Rare Met. 2021;40:2381. https://doi.org/10.1007/s12598-020-01616-w.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 22168040 and 22162025) and the Project of Science & Technology Office of Shannxi Province (No. 2022JM-062).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chun-Ming Yang, Feng Fu or Dan-Jun Wang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 8093 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, RQ., Bian, YJ., Yang, CM. et al. Electronic structure regulation and built-in electric field synergistically strengthen photocatalytic nitrogen fixation performance on Ti-BiOBr/TiO2 heterostructure. Rare Met. 43, 1125–1138 (2024). https://doi.org/10.1007/s12598-023-02471-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02471-1

Keywords

Navigation