Skip to main content

Electron-ion collider in China

Abstract

Lepton scattering is an established ideal tool for studying inner structure of small particles such as nucleons as well as nuclei. As a future high energy nuclear physics project, an Electron-ion collider in China (EicC) has been proposed. It will be constructed based on an upgraded heavy-ion accelerator, High Intensity heavy-ion Accelerator Facility (HIAF) which is currently under construction, together with a new electron ring. The proposed collider will provide highly polarized electrons (with a polarization of ∼80%) and protons (with a polarization of ∼70%) with variable center of mass energies from 15 to 20 GeV and the luminosity of (2–3) × 1033 cm−2 · s−1. Polarized deuterons and Helium-3, as well as unpolarized ion beams from Carbon to Uranium, will be also available at the EicC.

The main foci of the EicC will be precision measurements of the structure of the nucleon in the sea quark region, including 3D tomography of nucleon; the partonic structure of nuclei and the parton interaction with the nuclear environment; the exotic states, especially those with heavy flavor quark contents. In addition, issues fundamental to understanding the origin of mass could be addressed by measurements of heavy quarkonia near-threshold production at the EicC. In order to achieve the above-mentioned physics goals, a hermetical detector system will be constructed with cutting-edge technologies.

This document is the result of collective contributions and valuable inputs from experts across the globe. The EicC physics program complements the ongoing scientific programs at the Jefferson Laboratory and the future EIC project in the United States. The success of this project will also advance both nuclear and particle physics as well as accelerator and detector technology in China.

References and notes

  1. 1.

    C. Seife, Illuminating the dark universe, Science 302(5653), 2038 (2003)

    ADS  Article  Google Scholar 

  2. 2.

    S. Weinberg, A model of leptons, Phys. Rev. Lett. 19, 1264 (1967)

    ADS  Article  Google Scholar 

  3. 3.

    A. Salam and J. C. Ward, Weak and electromagnetic interactions, Nuovo Cim. 11, 568 (1959)

    ADS  MATH  Article  Google Scholar 

  4. 4.

    S. L. Glashow, The renormalizability of vector meson interactions, Nucl. Phys. 10, 107 (1959)

    MATH  Article  Google Scholar 

  5. 5.

    D. J. Gross and F. Wilczek, Asymptotically free gauge theories (I): Phys. Rev. D 8, 3633 (1973)

    ADS  Article  Google Scholar 

  6. 6.

    D. J. Gross and F. Wilczek, Asymptotically free gauge theories (II): Phys. Rev. D 9, 980 (1974)

    ADS  Article  Google Scholar 

  7. 7.

    S. Weinberg, Baryon and lepton nonconserving processes, Phys. Rev. Lett. 43, 1566 (1979)

    ADS  Article  Google Scholar 

  8. 8.

    F. Englert and R. Brout, Broken symmetry and the mass of gauge vector mesons, Phys. Rev. Lett. 13, 321 (1964)

    ADS  MathSciNet  Article  Google Scholar 

  9. 9.

    P. W. Higgs, Broken symmetries and the masses of gauge bosons, Phys. Rev. Lett. 13, 508 (1964)

    ADS  MathSciNet  Article  Google Scholar 

  10. 10.

    P. A. Zyla, et al. (Particle Data Group), The review of particle physics, Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

    Article  Google Scholar 

  11. 11.

    Jr. Callan, G. Curtis, R. F. Dashen, and D. J. Gross, Toward a theory of the strong interactions, Phys. Rev. D 17, 2717 (1978)

    ADS  Article  Google Scholar 

  12. 12.

    D. J. Gross and F. Wilczek, Ultraviolet behavior of nonabelian gauge theories, Phys. Rev. Lett. 30, 1343 (1973)

    ADS  Article  Google Scholar 

  13. 13.

    H. D. Politzer, Reliable perturbative results for strong interactions? Phys. Rev. Lett. 30, 1346 (1973)

    ADS  Article  Google Scholar 

  14. 14.

    M. Gell-Mann, A schematic model of baryons and mesons, Phys. Lett. 8, 214 (1964)

    ADS  Article  Google Scholar 

  15. 15.

    G. Zweig, An SU(3) model for strong interaction symmetry and its breaking, Version 1, CERN-TH-401 1 (1964)

  16. 16.

    E. D. Bloom, et al., High-energy in elastic e-p scattering at 6° and 10°, Phys. Rev. Lett. 23, 930 (1969)

    ADS  Article  Google Scholar 

  17. 17.

    C. Chang, et al., Observed deviations from scale invariance in high-energy muon scattering, Phys. Rev. Lett. 35, 901 (1975)

    ADS  Article  Google Scholar 

  18. 18.

    J. J. Aubert, et al., The ratio of the nucleon structure functions F N2 for iron and deuterium, Phys. Lett. B 123, 275 (1983)

    ADS  Article  Google Scholar 

  19. 19.

    A. C. Benvenuti, et al., Nuclear effects in deep inelastic muon scattering on deuterium and iron targets, Phys. Lett. B 189, 483 (1987)

    ADS  Article  Google Scholar 

  20. 20.

    J. Gomez, et al., Measurement of the A-dependence of deep inelastic electron scattering, Phys. Rev. D 49, 4348 (1994)

    ADS  Article  Google Scholar 

  21. 21.

    D. F. Geesaman, K. Saito, and A. W. Thomas, The nuclear EMC effect, Ann. Rev. Nucl. Part. Sci. 45, 337 (1995)

    ADS  Article  Google Scholar 

  22. 22.

    J. Seely, et al., New measurements of the EMC effect in very light nuclei, Phys. Rev. Lett. 103, 202301 (2009)

    ADS  Article  Google Scholar 

  23. 23.

    L. B. Weinstein, E. Piasetzky, D. W. Higinbotham, J. Gomez, O. Hen, and R. Shneor, Short range correlations and the EMC effect, Phys. Rev. Lett. 106, 052301 (2011)

    ADS  Article  Google Scholar 

  24. 24.

    J. Arrington, A. Daniel, D. Day, N. Fomin, D. Gaskell, and P. Solvignon, A detailed study of the nuclear dependence of the EMC effect and short-range correlations, Phys. Rev. C 86, 065204 (2012)

    ADS  Article  Google Scholar 

  25. 25.

    O. Hen, G. A. Miller, E. Piasetzky, and L. B. Weinstein, Nucleon-nucleon correlations, short-lived excitations, and the quarks within, Rev. Mod. Phys. 89(4), 045002 (2017)

    ADS  Article  Google Scholar 

  26. 26.

    S. Godfrey and N. Isgur, Mesons in a relativized quark model with chromodynamics, Phys. Rev. D 32, 189 (1985)

    ADS  Article  Google Scholar 

  27. 27.

    S. Capstick and N. Isgur, Baryons in a relativized quark model with chromodynamics, AIP Conf. Proc. 132, 267 (1985)

    ADS  Article  Google Scholar 

  28. 28.

    S. Coleman and R. E. Norton, Singularities in the physical region, Nuovo Cim. 38, 438 (1965)

    Article  Google Scholar 

  29. 29.

    F.-K. Guo, X.-H. Liu, and S. Sakai, Threshold cusps and triangle singularities in hadronic reactions, Prog. Part. Nucl. Phys. 112, 103757 (2020)

    Article  Google Scholar 

  30. 30.

    A. Accardi, et al., Electron Ion Collider: The next qcd frontier, Eur. Phys. J. A 52(9), 268 (2016)

    ADS  Article  Google Scholar 

  31. 31.

    J. L. A. Fernandez, et al., A large hadron electron collider at CERN report on the physics and design concepts for machine and detector, J. Phys. G: Nucl. Part. Phys. 39(7), 075001 (2012)

    ADS  Article  Google Scholar 

  32. 32.

    F. Gautheron, et al., COMPASS-II Proposal, 5 (2010)

  33. 33.

    G. van der Steenhoven, The HERMES experiment, Prog. Part. Nucl. Phys. 55, 181 (2005)

    ADS  Article  Google Scholar 

  34. 34.

    W. Braunschweig and H1 Collaboration, Status HERA and the experiments H1 and ZEUS, Nucl. Phys. B: Proc. Suppl. 31, 206 (1993)

    ADS  Article  Google Scholar 

  35. 35.

    J. Ashman, et al., A Measurement of the spin asymmetry and determination of the structure function g(1) in deep inelastic muon-proton scattering, Phys. Lett. B 206, 364 (1988)

    ADS  Article  Google Scholar 

  36. 36.

    P. Amaudruz, et al., The Gottfried, sum from the ratio F n2 /F p2 , Phys. Rev. Lett. 66}, 2712 (1991

    ADS  Article  Google Scholar 

  37. 37.

    M. Arneodo, et al., A reevaluation of the Gottfried sum, Phys. Rev. D 50, R1 (1994)

    ADS  Article  Google Scholar 

  38. 38.

    K. Ackerstaff, et al., The flavor asymmetry of the light quark sea from semiinclusive deep inelastic scattering, Phys. Rev. Lett. 81, 5519 (1998)

    ADS  Article  Google Scholar 

  39. 39.

    A. Baldit, et al., Study of the isospin symmetry breaking in the light quark sea of the nucleon from the Drell-Yan process, Phys. Lett. B 332, 244 (1994)

    ADS  Article  Google Scholar 

  40. 40.

    R. S. Towell, et al., Improved measurement of the anti-\(\bar d\)/anti-ū asymmetry in the nucleon sea, Phys. Rev. D 64, 052002 (2001)

    ADS  Article  Google Scholar 

  41. 41.

    R. S. Bhalerao, Is the polarized anti-quark sea in the nucleon flavor symmetric? Phys. Rev. C 63, 025208 (2001)

    ADS  Article  Google Scholar 

  42. 42.

    J.-C. Peng, Flavor structure of the nucleon sea, Eur. Phys. J. A 18, 395 (2003)

    ADS  MathSciNet  Article  Google Scholar 

  43. 43.

    C. Bourrely, J. Soffer, and F. Buccella, A statistical approach for polarized parton distributions, Eur. Phys. J. C 23, 487 (2002)

    ADS  Article  Google Scholar 

  44. 44.

    J. Adam, et al., Measurement of the longitudinal spin asymmetries for weak boson production in proton-proton collisions at \(\sqrt s = 510\,{\rm{GeV}}\), Phys. Rev. D 99(5), 051102 (2019)

    ADS  Article  Google Scholar 

  45. 45.

    E. Leader, A. V. Sidorov, and D. B. Stamenov, Impact of clas and compass data on polarized parton densities and higher twist, Phys. Rev. D 75, 074027 (2007)

    ADS  Article  Google Scholar 

  46. 46.

    M. Hirai, S. Kumano, and N. Saito, Determination of polarized parton distribution functions with recent data on polarization asymmetries, Phys. Rev. D 74, 014015 (2006)

    ADS  Article  Google Scholar 

  47. 47.

    A. Airapetian, et al., Quark helicity distributions in the nucleon for up, down, and strange quarks from semi-inclusive deep-inelastic scattering, Phys. Rev. D 71, 012003 (2005)

    ADS  Article  Google Scholar 

  48. 48.

    A. Airapetian, et al., Measurement of parton distributions of strange quarks in the nucleon from charged-kaon production in deep-inelastic scattering on the deuteron, Phys. Lett. B 666, 446 (2008)

    ADS  Article  Google Scholar 

  49. 49.

    D. de Florian, R. Sassot, M. Stratmann, and W. Vogelsang, Global analysis of helicity parton densities and their uncertainties, Phys. Rev. Lett. 101, 072001 (2008)

    ADS  Article  Google Scholar 

  50. 50.

    A. Airapetian, et al., Flavor decomposition of the sea quark helicity distributions in the nucleon from semiinclusive deep inelastic scattering, Phys. Rev. Lett. 92, 012005 (2004)

    ADS  Article  Google Scholar 

  51. 51.

    D. De Florian, G. A. Lucero, R. Sassot, M. Stratmann, and W. Vogelsang, Monte Carlo sampling variant of the DSSV14 set of helicity parton densities, Phys. Rev. D 100(11), 114027 (2019)

    ADS  Article  Google Scholar 

  52. 52.

    C. Schmidt, J. Pumplin, C. P. Yuan, and P. Yuan, Updating and optimizing error parton distribution function sets in the Hessian approach, Phys. Rev. D 98(9), 094005 (2018)

    ADS  Article  Google Scholar 

  53. 53.

    T.-J. Hou, Z. Yu, S. Dulat, C. Schmidt, and C. P. Yuan, Updating and optimizing error parton distribution function sets in the Hessian approach (II): Phys. Rev. D 100(11), 114024 (2019)

    ADS  Article  Google Scholar 

  54. 54.

    R. P. Feynman, Photon-Hadron Interactions, CRC Press, 1973

  55. 55.

    J. D. Bjorken and E. A. Paschos, Inelastic electron proton and gamma proton scattering, and the structure of the nucleon, Phys. Rev. 185, 1975 (1969)

    ADS  Article  Google Scholar 

  56. 56.

    J. C. Collins and D. E. Soper, Back-to-back jets in QCD, Nucl. Phys. B 193, 381 (1981) [Erratum: Nucl. Phys. B 213, 545 (1983)]

    ADS  Article  Google Scholar 

  57. 57.

    J. C. Collins and D. E. Soper, Parton distribution and decay functions, Nucl. Phys. B 194, 445 (1982)

    ADS  Article  Google Scholar 

  58. 58.

    D. Müller, D. Robaschik, B. Geyer, F. M. Dittes, and J. Hořejvsi, Wave functions, evolution equations and evolution kernels from light ray operators of QCD, Fortsch. Phys. 42, 101 (1994)

    ADS  Article  Google Scholar 

  59. 59.

    X.-D. Ji, Deeply virtual Compton scattering, Phys. Rev. D 55, 7114 (1997)

    ADS  Article  Google Scholar 

  60. 60.

    X.-D. Ji, Gauge-invariant decomposition of nucleon spin, Phys. Rev. Lett. 78, 610 (1997)

    ADS  Article  Google Scholar 

  61. 61.

    A. V. Radyushkin, Nonforward parton distributions, Phys. Rev. D 56, 5524 (1997)

    ADS  Article  Google Scholar 

  62. 62.

    A. Bacchetta, U. D’Alesio, M. Diehl, and C. A. Miller, Single-spin asymmetries: The Trento conventions, Phys. Rev. D 70, 117504 (2004)

    ADS  Article  Google Scholar 

  63. 63.

    X.-D. Ji, J.-P. Ma, and F. Yuan, QCD factorization for semi-inclusive deep-inelastic scattering at low transverse momentum, Phys. Rev. D 71, 034005 (2005)

    ADS  Article  Google Scholar 

  64. 64.

    X.-D. Ji, J.-P. Ma, and F. Yuan, QCD factorization for spin-dependent cross sections in DIS and Drell-Yan processes at low transverse momentum, Phys. Lett. B 597, 299 (2004)

    ADS  Article  Google Scholar 

  65. 65.

    P. J. Mulders and R. D. Tangerman, The complete tree level result up to order 1/Q for polarized deep inelastic leptoproduction, Nucl. Phys. B 461, 197 (1996) [Erratum: Nucl. Phys. B 484, 538 (1997)]

    ADS  Article  Google Scholar 

  66. 66.

    D. W. Sivers, Single spin production asymmetries from the hard scattering of point-like constituents, Phys. Rev. D 41, 83 (1990)

    ADS  Article  Google Scholar 

  67. 67.

    J. C. Collins, Fragmentation of transversely polarized quarks probed in transverse momentum distributions, Nucl. Phys. B 396, 161 (1993)

    ADS  Article  Google Scholar 

  68. 68.

    S. J. Brodsky, D. S. Hwang, and I. Schmidt, Final state interactions and single spin asymmetries in semiinclusive deep inelastic scattering, Phys. Lett. B 530, 99 (2002)

    ADS  Article  Google Scholar 

  69. 69.

    J. C. Collins, Leading twist single transverse-spin asymmetries: Drell-Yan and deep inelastic scattering, Phys. Lett. B 536, 43 (2002)

    ADS  Article  Google Scholar 

  70. 70.

    L. Adamczyk, et al., Measurement of the transverse single-spin asymmetry in p+ pW±/Z0 at RHIC, Phys. Rev. Lett. 116(13), 132301 (2016)

    ADS  Article  Google Scholar 

  71. 71.

    M. Aghasyan, et al., First measurement of transversespin-dependent azimuthal asymmetries in the Drell-Yan process, Phys. Rev. Lett. 119(11), 112002 (2017)

    ADS  Article  Google Scholar 

  72. 72.

    X.-D. Ji, J.-P. Ma, and F. Yuan, Three quark light cone amplitudes of the proton and quark orbital motion dependent observables, Nucl. Phys. B 652, 383 (2003)

    ADS  Article  Google Scholar 

  73. 73.

    E. S. Ageev, et al., A New measurement of the Collins and Sivers asymmetries on a transversely polarised deuteron target, Nucl. Phys. B 765, 31 (2007)

    ADS  Article  Google Scholar 

  74. 74.

    M. Alekseev, et al., Collins and Sivers asymmetries for pions and kaons in muon-deuteron DIS, Phys. Lett. B 673, 127 (2009)

    ADS  Article  Google Scholar 

  75. 75.

    M. G. Alekseev, et al., Measurement of the Collins and Sivers asymmetries on transversely polarised protons, Phys. Lett. B 692, 240 (2010)

    ADS  Article  Google Scholar 

  76. 76.

    C. Adolph, et al., Collins and Sivers asymmetries in muonproduction of pions and kaons off transversely polarised protons, Phys. Lett. B 744, 250 (2015)

    ADS  Article  Google Scholar 

  77. 77.

    X. Qian, et al., Single spin asymmetries in charged pion production from semi-inclusive deep inelastic scattering on a transversely polarized 3He target, Phys. Rev. Lett. 107, 072003 (2011)

    ADS  Article  Google Scholar 

  78. 78.

    A. Airapetian, et al., Single-spin asymmetries in semiinclusive deep-inelastic scattering on a transversely polarized hydrogen target, Phys. Rev. Lett. 94, 012002 (2005)

    ADS  Article  Google Scholar 

  79. 79.

    A. Airapetian, et al., Observation of the naive-t-odd sivers effect in deep-inelastic scattering, Phys. Rev. Lett. 103, 152002 (2009)

    ADS  Article  Google Scholar 

  80. 80.

    M. Boglione, A. Dotson, L. Gamberg, S. Gordon, J. O. Gonzalez-Hernandez, A. Prokudin, T. C. Rogers, and N. Sato, Mapping the kinematical regimes of semiinclusive deep inelastic scattering, JHEP 10, 122 (2019)

    ADS  Article  Google Scholar 

  81. 81.

    M. Boglione, U. D’Alesio, C. Flore, and J. O. Gonzalez-Hernandez, Assessing signals of TMD physics in SIDIS azimuthal asymmetries and in the extraction of the Sivers function, JHEP 07, 148 (2018)

    ADS  Article  Google Scholar 

  82. 82.

    H. Dong, Du-X Zheng, and J. Zhou, Sea quark Sivers distribution, Phys. Lett. B 788, 401 (2019)

    ADS  MATH  Article  Google Scholar 

  83. 83.

    J. Collins and T. Rogers, Understanding the large-distance behavior of transverse-momentum-dependent parton densities and the Collins-Soper evolution kernel, Phys. Rev. D 91(7), 074020 (2015)

    ADS  Article  Google Scholar 

  84. 84.

    M. Diehl and S. Sapeta, On the analysis of lepton scattering on longitudinally or transversely polarized protons, Eur. Phys. J. C 41, 515 (2005)

    ADS  Article  Google Scholar 

  85. 85.

    M. Burkardt, Impact parameter dependent parton distributions and off forward parton distributions for ζ → 0, Phys. Rev. D 62, 071503 (2000) [Erratum: Phys. Rev. D 66, 119903 (2002)]

    ADS  Article  Google Scholar 

  86. 86.

    M. Burkardt, Impact parameter space interpretation for generalized parton distributions, Int. J. Mod. Phys. A 18, 173 (2003)

    ADS  MATH  Article  Google Scholar 

  87. 87.

    M. V. Polyakov, Generalized parton distributions and strong forces inside nucleons and nuclei, Phys. Lett. B 555, 57 (2003)

    ADS  MATH  Article  Google Scholar 

  88. 88.

    C. Lorcé, H. Moutarde, and A. P. Trawiński, Revisiting the mechanical properties of the nucleon, Eur. Phys. J. C 79(1), 89 (2019)

    ADS  Article  Google Scholar 

  89. 89.

    P. E. Shanahan and W. Detmold, Pressure distribution and shear forces inside the proton, Phys. Rev. Lett. 122(7), 072003 (2019)

    ADS  Article  Google Scholar 

  90. 90.

    M. V. Polyakov and P. Schweitzer, Forces inside hadrons: Pressure, surface tension, mechanical radius, and all that, Int. J. Mod. Phys. A 33(26), 1830025 (2018)

    ADS  Article  Google Scholar 

  91. 91.

    V. D. Burkert, L. Elouadrhiri, and F. X. Girod, The pressure distribution inside the proton, Nature 557(7705), 396 (2018)

    ADS  Article  Google Scholar 

  92. 92.

    K. Kumerivcki, Measurability of pressure inside the proton, Nature 570(7759), E1 (2019)

    ADS  Article  Google Scholar 

  93. 93.

    H. Moutarde, P. Sznajder, and J. Wagner, Border and skewness functions from a leading order fit to DVCS data, Eur. Phys. J. C 78(11), 890 (2018)

    ADS  Article  Google Scholar 

  94. 94.

    H. Moutarde, P. Sznajder, and J. Wagner, Unbiased determination of DVCS Compton form factors, Eur. Phys. J. C 79(7), 614 (2019)

    ADS  Article  Google Scholar 

  95. 95.

    K. Kumericki, D. Mueller, and K. Passek-Kumericki, Towards a fitting procedure for deeply virtual Compton scattering at next-to-leading order and beyond, Nucl. Phys. B 794, 244 (2008)

    ADS  Article  Google Scholar 

  96. 96.

    K. Kumerivcki and D. Mueller, Deeply virtual Compton scattering at small xB and the access to the GPD H, Nucl. Phys. B 841, 1 (2010)

    ADS  Article  Google Scholar 

  97. 97.

    M. Guidal, H. Moutarde, and M. Vanderhaeghen, Generalized parton distributions in the valence region from deeply virtual compton scattering, Rep. Prog. Phys. 76, 066202 (2013)

    ADS  Article  Google Scholar 

  98. 98.

    K. Kumericki, S. Liuti, and H. Moutarde, GPD phenomenology and DVCS fitting: Entering the high-precision era, Eur. Phys. J. A 52(6), 157 (2016)

    ADS  Article  Google Scholar 

  99. 99.

    A. Airapetian, et al., Beam-helicity asymmetry arising from deeply virtual Compton scattering measured with kinematically complete event reconstruction, JHEP 10, 042 (2012)

    ADS  Article  Google Scholar 

  100. 100.

    A. Sandacz, COMPASS results on DVCS and exclusive π0 production, J. Phys. Conf. Ser. 938(1), 012015 (2017)

    Article  Google Scholar 

  101. 101.

    C. E. Hyde, M. Guidal, and A. V. Radyushkin, Deeply virtual exclusive processes and generalized parton distributions, J. Phys. Conf. Ser. 299, 012006 (2011)

    Article  Google Scholar 

  102. 102.

    https://www.jlab.org/exp_prog/proposals/06/PR12-06-114.pdf

  103. 103.

    https://www.jlab.org/exp_prog/proposals/06/PR12-06-119.pdf

  104. 104.

    https://www.jlab.org/exp_prog/PACpage/PAC37/proposals/Proposals/New%20Proposals/PR-11-003.pdf

  105. 105.

    https://www.jlab.org/exp_prog/proposals/13/PR12-13-010.pdf

  106. 106.

    H. Moutarde, B. Pire, F. Sabatie, L. Szymanowski, and J. Wagner, Timelike and spacelike deeply virtual Compton scattering at next-to-leading order, Phys. Rev. D 87(5), 054029 (2013)

    ADS  Article  Google Scholar 

  107. 107.

    V. M. Braun, A. N. Manashov, D. Müller, and B. M. Pirnay, Deeply Virtual Compton Scattering to the twist-four accuracy: Impact of finite-t and target mass corrections, Phys. Rev. D 89(7), 074022 (2014)

    ADS  Article  Google Scholar 

  108. 108.

    M. Defurne, et al., E00-110 experiment at Jefferson Lab Hall A: Deeply virtual Compton scattering off the proton at 6 GeV, Phys. Rev. C 92(5), 055202 (2015)

    ADS  Article  Google Scholar 

  109. 109.

    M. Defurne, et al., A glimpse of gluons through deeply virtual compton scattering on the proton, Nature Commun. 8(1), 1408 (2017)

    ADS  Article  Google Scholar 

  110. 110.

    E. Perez, L. Schoeffel, and L. Favart, MILOU: A Monte Carlo for deeply virtual Compton scattering, arXiv: hep-ph/0411389 (2004)

  111. 111.

    K. Kumericki, D. Mueller, and A. Schafer, Neural network generated parametrizations of deeply virtual Compton form factors, JHEP 07, 073 (2011)

    ADS  MATH  Article  Google Scholar 

  112. 112.

    B. Berthou, et al., PARTONS: PArtonic tomography of nucleon software, Eur. Phys. J. C 78(6), 478 (2018)

    ADS  Article  Google Scholar 

  113. 113.

    M. Cuic, K. Kumericki, and A. Schafer, separation of quark flavors using DVCS data, arXiv: 2007.00029 [hep-ph] (2020)

  114. 114.

    S. V. Goloskokov and P. Kroll, An Attempt to understand exclusive π+ electroproduction, Eur. Phys. J. C 65, 137 (2010)

    ADS  Article  Google Scholar 

  115. 115.

    S. V. Goloskokov and P. Kroll, Transversity in hard exclusive electroproduction of pseudoscalar mesons, Eur. Phys. J. A 47, 112 (2011)

    ADS  Article  Google Scholar 

  116. 116.

    P. Kroll, H. Moutarde, and F. Sabatie, From hard exclusive meson electroproduction to deeply virtual Compton scattering, Eur. Phys. J. C 73(1), 2278 (2013)

    ADS  Article  Google Scholar 

  117. 117.

    A. Airapetian, et al., Measurement of azimuthal asymmetries with respect to both beam charge and transverse target polarization in exclusive electroproduction of real photons, JHEP 06, 066 (2008)

    Google Scholar 

  118. 118.

    G. R. Goldstein, J. O G. Hernandez, and S. Liuti, Flexible parametrization of generalized parton distributions: The chiral-odd sector, Phys. Rev. D 91(11), 114013 (2015)

    ADS  Article  Google Scholar 

  119. 119.

    A. Kim, et al., Target and double spin asymmetries of deeply virtual π0 production with a longitudinally polarized proton target and CLAS, Phys. Lett. B 768, 168 (2017)

    ADS  Article  Google Scholar 

  120. 120.

    R. A. Khalek, J. J. Ethier, J. Rojo, and G. van Weelden, nNNPDF2.0: Quark flavor separation in nuclei from LHC data, JHEP 09, 183 (2020)

    ADS  Article  Google Scholar 

  121. 121.

    K. J. Eskola, P. Paakkinen, H. Paukkunen, and C. A. Salgado, EPPS16: Nuclear parton distributions with LHC data, Eur. Phys. J. C 77(3), 163 (2017)

    ADS  Article  Google Scholar 

  122. 122.

    M. Hirai, S. Kumano, and T.-H. Nagai, Determination of nuclear parton distribution functions and their uncertainties in next-to-leading order, Phys. Rev. C 76, 065207 (2007)

    ADS  Article  Google Scholar 

  123. 123.

    D. de Florian, R. Sassot, P. Zurita, and M. Stratmann, Global analysis of nuclear parton distributions, Phys. Rev. D 85, 074028 (2012)

    ADS  Article  Google Scholar 

  124. 124.

    K. Kovarik, et al., nCTEQ15: Global analysis of nuclear parton distributions with uncertainties in the CTEQ framework, Phys. Rev. D 93(8), 085037 (2016)

    ADS  Article  Google Scholar 

  125. 125.

    H. Khanpour and S. A. Tehrani, Global analysis of nuclear parton distribution functions and their uncertainties at next-to-next-to-leading order, Phys. Rev. D 93(1), 014026 (2016)

    ADS  Article  Google Scholar 

  126. 126.

    M. Walt, I. Helenius, and W. Vogelsang, Open-source QCD analysis of nuclear parton distribution functions at NLO and NNLO, Phys. Rev. D 100(9), 096015 (2019)

    ADS  Article  Google Scholar 

  127. 127.

    J. Ashman, et al., A measurement of the ratio of the nucleon structure function in copper and deuterium, Z. Phys. C 57, 211 (1993)

    ADS  Article  Google Scholar 

  128. 128.

    V. Guzey, L. Zhu, C. E. Keppel, M. E. Christy, D. Gaskell, P. Solvignon, and A. Accardi, Impact of nuclear dependence of R = σL/σT on antishadowing in nuclear structure functions, Phys. Rev. C 86, 045201 (2012)

    ADS  Article  Google Scholar 

  129. 129.

    B. Schmookler, et al., Modified structure of protons and neutrons in correlated pairs, Nature 566(7744), 354 (2019)

    Article  Google Scholar 

  130. 130.

    I. Borsa, G. Lucero, R. Sassot, E. C. Aschenauer, and A. S. Nunes, Revisiting helicity parton distributions at a future electron-ion collider, Phys. Rev. D 102(9), 094018 (2020)

    ADS  Article  Google Scholar 

  131. 131.

    W. Cosyn, V. Guzey, M. Sargsian, M. Strikman, and C. Weiss, Electron-deuteron DIS with spectator tagging at EIC: Development of theoretical framework, EPJ Web Conf. 112, 01022 (2016)

    Article  Google Scholar 

  132. 132.

    L. Frankfurt, V. Guzey, and M. Strikman, Leading twist nuclear shadowing phenomena in hard processes with nuclei, Phys. Rep. 512, 255 (2012)

    ADS  Article  Google Scholar 

  133. 133.

    M. Gyulassy and X.-N. Wang, Multiple collisions and induced gluon Bremsstrahlung in QCD, Nucl. Phys. B 420, 583 (1994)

    ADS  Article  Google Scholar 

  134. 134.

    R. Baier, Y. L. Dokshitzer, A. H. Mueller, S. Peigne, and D. Schiff, Radiative energy loss and p-broadening of high-energy partons in nuclei, Nucl. Phys. B 484, 265 (1997)

    ADS  Article  Google Scholar 

  135. 135.

    M. Gyulassy, P. Levai, and I. Vitev, Reaction operator approach to nonAbelian energy loss, Nucl. Phys. B 594, 371 (2001)

    ADS  MATH  Article  Google Scholar 

  136. 136.

    B. G. Zakharov, Radiative energy loss of high-energy quarks in finite size nuclear matter and quark-gluon plasma, JETP Lett. 65, 615 (1997)

    ADS  Article  Google Scholar 

  137. 137.

    X.-F. Guo and X.-N. Wang, Multiple scattering, parton energy loss and modified fragmentation functions in deeply inelastic eA scattering, Phys. Rev. Lett. 85, 3591 (2000)

    ADS  Article  Google Scholar 

  138. 138.

    A. Airapetian, et al., Hadronization in semi-inclusive deep-inelastic scattering on nuclei, Nucl. Phys. B 780, 1 (2007)

    ADS  Article  Google Scholar 

  139. 139.

    M. A. Vasilev, et al., Parton energy loss limits and shadowing in Drell-Yan dimuon production, Phys. Rev. Lett. 83, 2304 (1999)

    ADS  Article  Google Scholar 

  140. 140.

    E. Wang and X.-N. Wang, Jet tomography of dense and nuclear matter, Phys. Rev. Lett. 89, 162301 (2002)

    ADS  Article  Google Scholar 

  141. 141.

    N.-B. Chang, W.-T. Deng, and X.-N. Wang, Initial conditions for the modified evolution of fragmentation functions in the nuclear medium, Phys. Rev. C 89(3), 034911 (2014)

    ADS  Article  Google Scholar 

  142. 142.

    H. Xing, Y. Guo, E. Wang, and X.-N. Wang, Parton energy loss and modified beam quark distribution functions in Drell-Yan process in p+A collisions, Nucl. Phys. A 879, 77 (2012)

    ADS  Article  Google Scholar 

  143. 143.

    F. Arleo, C.-J. Naïm, and S. Platchkov, Initial-state energy loss in cold QCD matter and the Drell-Yan process, JHEP 01, 129 (2019)

    ADS  Article  Google Scholar 

  144. 144.

    A. Bialas, Attenuation of high-energy particles leptoproduced in nuclear matter, Acta Phys. Polon. B 11, 475 (1980)

    Google Scholar 

  145. 145.

    N. Akopov, L. Grigoryan, and Z. Akopov, Application of the two-scale model to the HERMES data on nuclear attenuation, Eur. Phys. J. C 44, 219 (2005)

    ADS  Article  Google Scholar 

  146. 146.

    K. M. Burke, et al., Extracting the jet transport coefficient from jet quenching in high-energy heavy-ion collisions, Phys. Rev. C 90(1), 014909 (2014)

    ADS  Article  Google Scholar 

  147. 147.

    P. Ru, Z.-B. Kang, E. Wang, H. Xing, and B.-W. Zhang, A global extraction of the jet transport coefficient in cold nuclear matter, arXiv: 1907.11808 (2019)

  148. 148.

    P. A. Zyla, et al.(Particle Data Gruop), Review of particle properties, Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

    Article  Google Scholar 

  149. 149.

    R. L. Jaffe, Exotica, Phys. Rep. 409, 1 (2005)

    ADS  Article  Google Scholar 

  150. 150.

    E. S. Swanson, The new heavy mesons: A status report, Phys. Rep. 429, 243 (2006)

    ADS  Article  Google Scholar 

  151. 151.

    M. B. Voloshin, Charmonium, Prog. Part. Nucl. Phys. 61, 455 (2008)

    ADS  Article  Google Scholar 

  152. 152.

    E. Klempt and A. Zaitsev, Glueballs, hybrids, multiquarks. experimental facts versus QCD inspired concepts, Phys. Rep. 454, 1 (2007)

    ADS  Article  Google Scholar 

  153. 153.

    E. Klempt and J.-M. Richard, Baryon spectroscopy, Rev. Mod. Phys. 82, 1095 (2010)

    ADS  Article  Google Scholar 

  154. 154.

    N. Brambilla, et al., Heavy quarkonium: Progress, puzzles, and opportunities, Eur. Phys. J. C 71, 1534 (2011)

    ADS  Article  Google Scholar 

  155. 155.

    H.-X. Chen, W. Chen, X. Liu, and S.-L. Zhu, The hiddencharm pentaquark and tetraquark states, Phys. Rep. 639, 1 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  156. 156.

    A. Hosaka, T. Iijima, K. Miyabayashi, Y. Sakai, and S. Yasui, Exotic hadrons with heavy flavors: X, Y, Z, and related states, PTEP 2016(6), 062C01 (2016)

    Google Scholar 

  157. 157.

    R. F. Lebed, R. E. Mitchell, and E. S. Swanson, Heavyquark QCD exotica, Prog. Part. Nucl. Phys. 93, 143 (2017)

    ADS  Article  Google Scholar 

  158. 158.

    A. Esposito, A. Pilloni, and A. D. Polosa, Multiquark Resonances, Phys. Rep. 668, 1 (2017)

    ADS  MathSciNet  Article  Google Scholar 

  159. 159.

    F.-K. Guo, C. Hanhart, Ulf-G. Meißner, Q. Wang, Q. Zhao, and B.-S. Zou, Hadronic molecules, Rev. Mod. Phys. 90(1), 015004 (2018)

    ADS  Article  Google Scholar 

  160. 160.

    Y. Dong, A. Faessler, and V. E. Lyubovitskij, Description of heavy exotic resonances as molecular states using phenomenological Lagrangians, Prog. Part. Nucl. Phys. 94, 282 (2017)

    ADS  Article  Google Scholar 

  161. 161.

    A. Ali, J. Sören Lange, and S. Stone, Exotics: Heavy pentaquarks and tetraquarks, Prog. Part. Nucl. Phys. 97, 123 (2017)

    ADS  Article  Google Scholar 

  162. 162.

    S. L Olsen, T. Skwarnicki, and D. Zieminska, Nonstandard heavy mesons and baryons: Experimental evidence, Rev. Mod. Phys. 90(1), 015003 (2018)

    ADS  MathSciNet  Article  Google Scholar 

  163. 163.

    M. Karliner, J. L. Rosner, and T. Skwarnicki, Multiquark states, Ann. Rev. Nucl. Part. Sci. 68, 17 (2018)

    ADS  Article  Google Scholar 

  164. 164.

    C.-Z. Yuan, The XYZ states revisited, Int. J. Mod. Phys. A 33(21), 1830018 (2018)

    ADS  Article  Google Scholar 

  165. 165.

    W. Altmannshofer, et al., The Belle II Physics Book, PTEP 2019(12), 123C01 (2019) [Erratum: PTEP 2020, 029201 (2020)]

    Google Scholar 

  166. 166.

    A. Cerri, et al., Report from Working Group 4: Opportunities in Flavour Physics at the HL-LHC and HE-LHC Volume 7, pp 867–1158 (2019)

    Google Scholar 

  167. 167.

    N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C.-P. Shen, C. E. Thomas, A. Vairo, and C.-Z. Yuan, The XYZ states: Experimental and theoretical status and perspectives, Phys. Rep. 873, 1 (2020)

    ADS  Article  Google Scholar 

  168. 168.

    Y.-R. Liu, H.-X. Chen, W. Chen, X. Liu, and S.-L. Zhu, Pentaquark and tetraquark states, Prog. Part. Nucl. Phys. 107, 237 (2019)

    ADS  Article  Google Scholar 

  169. 169.

    Y. Yamaguchi, A. Hosaka, S. Takeuchi, and M. Takizawa, Heavy hadronic molecules with pion exchange and quark core couplings: A guide for practitioners, J. Phys. G 47(5), 053001 (2020)

    ADS  Article  Google Scholar 

  170. 170.

    T. Barnes, S. Godfrey, and E. S. Swanson, Higher charmonia, Phys. Rev. D 72, 054026 (2005)

    ADS  Article  Google Scholar 

  171. 171.

    F.-K. Guo and Ulf-G. Meißner, Where is the χc0(2P)? Phys. Rev. D 86, 091501 (2012)

    ADS  Article  Google Scholar 

  172. 172.

    M. Aghasyan, et al., Search for muoproduction of X(3872) at COMPASS and indication of a new state \(\tilde X\)(3872), Phys. Lett. B 783, 334 (2018)

    ADS  Article  Google Scholar 

  173. 173.

    A. Ali, et al., First measurement of near-threshold J/ψ exclusive photoproduction off the proton, Phys. Rev. Lett. 123(7), 072001 (2019)

    ADS  Article  Google Scholar 

  174. 174.

    R. Aaij, et al., Observation of J/ψφ structures consistent with exotic states from amplitude analysis of B+ → J/ψφK+ decays, Phys. Rev. Lett. 118(2), 022003 (2017)

    ADS  Article  Google Scholar 

  175. 175.

    R. Aaij, et al., Observation of J/ψp resonances consistent with pentaquark states in Γ 0b J/ψKp decays, Phys. Rev. Lett. 115, 072001 (2015)

    ADS  Article  Google Scholar 

  176. 176.

    R. Aaij, et al., Observation of a narrow pentaquark state, Pc(4312)+, and of two-peak structure of the Pc(4450)+, Phys. Rev. Lett. 122(22), 222001 (2019)

    ADS  Article  Google Scholar 

  177. 177.

    R. Mizuk, et al., Observation of a new structure near 10.75 GeV in the energy dependence of the e+e → Υ(nS)π+π (n = 1,2,3) cross sections, JHEP 10, 220 (2019)

    ADS  Article  Google Scholar 

  178. 178.

    E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane, and T.-M. Yan, Charmonium: The model, Phys. Rev. D 17, 3090 (1978) [Erratum: Phys. Rev. D 21, 313 (1980)]

    ADS  Article  Google Scholar 

  179. 179.

    E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane, and T.-M. Yan, Charmonium: Comparison with experiment, Phys. Rev. D 21, 203 (1980)

    ADS  Article  Google Scholar 

  180. 180.

    B. Gittelman, K. M. Hanson, D. Larson, E. Loh, A. Silverman, and G. Theodosiou, Photoproduction of the ψ(3100) meson at 11 GeV, Phys. Rev. Lett. 35, 1616 (1975)

    ADS  Article  Google Scholar 

  181. 181.

    U. Camerini, J.G. Learned, R. Prepost, C. M. Spencer, D. E. Wiser, W. Ash, R. L. Anderson, D. Ritson, D. Sherden, and C. K. Sinclair, Photoproduction of the ψ particles, Phys. Rev. Lett. 35, 483 (1975)

    ADS  Article  Google Scholar 

  182. 182.

    M. E. Binkley, et al., J/ψ photoproduction from 60 GeV/c to 300 GeV/c, Phys. Rev. Lett. 48, 73 (1982)

    ADS  Article  Google Scholar 

  183. 183.

    B. H. Denby, et al., Inelastic and elastic photoproduction of J/ψ(3097), Phys. Rev. Lett. 52, 795 (1984)

    ADS  Article  Google Scholar 

  184. 184.

    P. L. Frabetti, et al., A measurement of elastic J/ψ photoproduction cross-section at Fermilab E687, Phys. Lett. B 316, 197 (1993)

    ADS  Article  Google Scholar 

  185. 185.

    C. Adloff, et al., Elastic photoproduction of J/ψ and Υ mesons at HERA, Phys. Lett. B 483, 23 (2000)

    Article  Google Scholar 

  186. 186.

    S. Chekanov, et al., Exclusive photoproduction of J/ψ mesons at HERA, Eur. Phys. J. C 24, 345 (2002)

    Article  Google Scholar 

  187. 187.

    M. S. Atiya, et al., Evidence for the high-energy photoproduction of charmed mesons, Phys. Rev. Lett. 43, 414 (1979)

    ADS  Article  Google Scholar 

  188. 188.

    A. R. Clark, et al., Cross-section measurements for charm production by muons and photons, Phys. Rev. Lett. 45, 682 (1980)

    ADS  Article  Google Scholar 

  189. 189.

    J. J. Aubert, et al., Production of charmed particles in 250-GeV μ+-iron interactions, Nucl. Phys. B 213, 31 (1983)

    ADS  Article  Google Scholar 

  190. 190.

    M. I. Adamovich, et al., Cross-sections and some features of charm photoproduction at γ energies of 20 GeV to 70 GeV, Phys. Lett. B 187, 437 (1987)

    ADS  Article  Google Scholar 

  191. 191.

    O. Gryniuk and M. Vanderhaeghen, Accessing the real part of the forward J/ψ-p scattering amplitude from J/ψ photoproduction on protons around threshold, Phys. Rev. D 94(7), 074001 (2016)

    ADS  Article  Google Scholar 

  192. 192.

    M.-L. Du, V. Baru, F.-K. Guo, C. Hanhart, Ulf-G Meißner, J. A. Oller, and Q. Wang, interpretation of the LHCb Pc states as hadronic molecules and hints of a narrow Pc(4380), Phys. Rev. Lett. 124(7), 072001 (2020)

    ADS  Article  Google Scholar 

  193. 193.

    J.-J. Wu, R. Molina, E. Oset, and B. S. Zou, Prediction of narrow N* and A* resonances with hidden charm above 4 GeV, Phys. Rev. Lett. 105, 232001 (2010)

    ADS  Article  Google Scholar 

  194. 194.

    W. L. Wang, F. Huang, Z. Y. Zhang, and B. S. Zou, \({\sum _c}\bar D\) and \({\Lambda _c}\bar D\) states in a chiral quark model, Phys. Rev. C 84, 015203 (2011)

    ADS  Article  Google Scholar 

  195. 195.

    Z.-C. Yang, Z.-F. Sun, J. He, X. Liu, and S.-L. Zhu, The possible hidden-charm molecular baryons composed of anti-charmed meson and charmed baryon, Chin. Phys. C 36, 6 (2012)

    ADS  Article  Google Scholar 

  196. 196.

    J.-J. Wu, T. S. H. Lee, and B. S. Zou, Nucleon resonances with hidden charm in coupled-channel models, Phys. Rev. C 85, 044002 (2012)

    ADS  Article  Google Scholar 

  197. 197.

    C. W. Xiao, J. Nieves, and E. Oset, Combining heavy quark spin and local hidden gauge symmetries in the dynamical generation of hidden charm baryons, Phys. Rev. D 88, 056012 (2013)

    ADS  Article  Google Scholar 

  198. 198.

    T. Uchino, W.-H. Liang, and E. Oset, Baryon states with hidden charm in the extended local hidden gauge approach, Eur. Phys. J. A 52(3), 43 (2016)

    ADS  Article  Google Scholar 

  199. 199.

    M. Karliner and J. L. Rosner, New exotic meson and baryon resonances from doubly-heavy hadronic molecules, Phys. Rev. Lett. 115(12), 122001 (2015)

    ADS  Article  Google Scholar 

  200. 200.

    X. Cao and J.-P. Dai, Confronting pentaquark photoproduction with new LHCb observations, Phys. Rev. D 100(5), 054033 (2019)

    ADS  Article  Google Scholar 

  201. 201.

    Y.-H. Lin, C.-W. Shen, F.-K. Guo, and B.-S. Zou, Decay behaviors of the Pc hadronic molecules, Phys. Rev. D 95(11), 114017 (2017)

    ADS  Article  Google Scholar 

  202. 202.

    Y.-H. Lin and B.-S. Zou, Strong decays of the latest LHCb pentaquark candidates in hadronic molecule pictures, Phys. Rev. D 100(5), 056005 (2019)

    ADS  Article  Google Scholar 

  203. 203.

    Y. Dong, P. Shen, F. Huang, and Z. Zhang, Selected strong decays of pentaquark State Pc(4312) in a chiral constituent quark model, Eur. Phys. J. C 80(4), 341 (2020)

    ADS  Article  Google Scholar 

  204. 204.

    Y. Huang, J.-J. Xie, J. He, X. Chen, and H.-F. Zhang, Photoproduction of hidden-charm states in the \(\gamma p \rightarrow {\bar D^{ * 0}}\Lambda _c^ + \) reaction near threshold, Chin. Phys. C 40(12), 124104 (2016)

    ADS  Article  Google Scholar 

  205. 205.

    J.-J. Wu, T. S. H. Lee, and B.-S. Zou, Nucleon resonances with hidden charm in γp reactions, Phys. Rev. C 100(3), 035206 (2019)

    ADS  Article  Google Scholar 

  206. 206.

    J. Breitweg, et al., Measurement of elastic Upsilon photoproduction at HERA, Phys. Lett. B 437, 432 (1998)

    ADS  Article  Google Scholar 

  207. 207.

    S. Chekanov, et al., Exclusive photoproduction of upsilon mesons at HERA, Phys. Lett. B 680, 4 (2009)

    Article  Google Scholar 

  208. 208.

    CMS Collaboration, Measurement of exclusive Y photoproduction in pPb collisions at \(\sqrt {{s_{{\rm{NN}}}}} = 5.02\,{\rm{TeV}}\) (2016), https://cds.cern.ch/record/2147428

  209. 209.

    J. J. Aubert, et al., Observation of wrong sign trimuon events in 250-GeV muon-nucleon interactions, Phys. Lett. B 106, 419 (1981)

    ADS  Article  Google Scholar 

  210. 210.

    C. Adloff, et al., Measurement of open beauty production at HERA, Phys. Lett. B 467, 156 (1999) [Erratum: Phys. Lett. B 518, 331 (2001)]

    ADS  Article  Google Scholar 

  211. 211.

    L. Favart, M. Guidal, T. Horn, and P. Kroll, Deeply virtual meson production on the nucleon, Eur. Phys. J. A 52(6), 158 (2016)

    ADS  Article  Google Scholar 

  212. 212.

    S. J. Brodsky, E. Chudakov, P. Hoyer, and J. M. Laget, Photoproduction of charm near threshold, Phys. Lett. B 498, 23 (2001)

    ADS  Article  Google Scholar 

  213. 213.

    E. Martynov, E. Predazzi, and A. Prokudin, A universal regge pole model for all vector meson exclusive photoproduction by real and virtual photons, Eur. Phys. J. C26, 271 (2002)

    ADS  Article  Google Scholar 

  214. 214.

    E. Martynov, E. Predazzi, and A. Prokudin, Photoproduction of vector mesons in the soft dipole pomeron model, Phys. Rev. D 67, 074023 (2003)

    ADS  Google Scholar 

  215. 215.

    Y. Xu, Y. Xie, R. Wang, and X. Chen, Estimation of Υ(1S) production in ep process near threshold, Eur. Phys. J. C 80(3), 283 (2020)

    ADS  Article  Google Scholar 

  216. 216.

    F.-K. Guo, Ulf-G. Meißner, W. Wang, and Z. Yang, How to reveal the exotic nature of the Pc(4450), Phys. Rev. D 92(7), 071502 (2015)

    ADS  Article  Google Scholar 

  217. 217.

    X.-H. Liu, Q. Wang, and Q. Zhao, Understanding the newly observed heavy pentaquark candidates, Phys. Lett. B 757m, 231 (2016)

    ADS  Article  Google Scholar 

  218. 218.

    Q. Wang, C. Hanhart, and Q. Zhao, Decoding the riddle of Y(4260) and Zc(3900), Phys. Rev. Lett. 111(13), 132003 (2013)

    ADS  Article  Google Scholar 

  219. 219.

    Q. Wang, C. Hanhart, and Q. Zhao, Systematic study of the singularity mechanism in heavy quarkonium decays, Phys. Lett. B 725(1-3), 106 (2013)

    ADS  Article  Google Scholar 

  220. 220.

    A. Pilloni, C. Fernandez-Ramirez, A. Jackura, V. Mathieu, M. Mikhasenko, J. Nys, and A. P. Szczepaniak. Amplitude analysis and the nature of the Zc(3900), Phys. Lett. B 772, 200 (2017)

    ADS  Article  Google Scholar 

  221. 221.

    A. P. Szczepaniak, Triangle singularities and XYZ quarkonium peaks, Phys. Lett. B 747, 410 (2015)

    ADS  Article  Google Scholar 

  222. 222.

    M. Albaladejo, F.-K. Guo, C. Hidalgo-Duque, and J. Nieves, Zc(3900): What has been really seen? Phys. Lett. B 755, 337 (2016)

    ADS  Article  Google Scholar 

  223. 223.

    Q.-R. Gong, J.-L. Pang, Y.-F. Wang, and H.-Q. Zheng, The Zc(3900) peak does not come from the “triangle singularity”, Eur. Phys. J. C 78(4), 276 (2018)

    Article  Google Scholar 

  224. 224.

    F.-K. Guo, Triangle singularities and charmonium-like XYZ states, Nucl. Phys. Rev. 37(3), 406 (2020)

    Google Scholar 

  225. 225.

    S. X. Nakamura and K. Tsushima, Zc(4430) and Zc(4200) as triangle singularities, Phys. Rev. D 100(5), 051502 (2019)

    ADS  Article  Google Scholar 

  226. 226.

    S. X. Nakamura, Triangle singularities in \({\bar B^0}\,\,\, \rightarrow \,\,\,{\chi _{c1}}{K^ - }{\pi ^ + }\) relevant to Z1(4050) and Z2(4250), Phys. Rev. D 100(1), 011504 (2019)

    ADS  Article  Google Scholar 

  227. 227.

    C Adolph, et al., Search for exclusive photoproduction of Z ±c (3900) at COMPASS, Phys. Lett. B 742, 330 (2015)

    ADS  Article  Google Scholar 

  228. 228.

    X.-H. Liu, Q. Zhao, and F. E. Close, Search for tetraquark candidate Z(4430) in meson photoproduction, Phys. Rev. D 77, 094005 (2008)

    ADS  Article  Google Scholar 

  229. 229.

    J. He and X. Liu, Discovery potential for charmoniumlike state Y(3940) by the meson photoproduction, Phys. Rev. D 80, 114007 (2009)

    ADS  Article  Google Scholar 

  230. 230.

    G. Galata, Photoproduction of Z(4430) through mesonic Regge trajectories exchange, Phys. Rev. C 83, 065203 (2011)

    ADS  Article  Google Scholar 

  231. 231.

    Q.-Y. Lin, X. Liu, and H.-S. Xu, Charged charmoniumlike state Zc(3900)± via meson photoproduction, Phys. Rev. D 88, 114009 (2013)

    ADS  Article  Google Scholar 

  232. 232.

    Q.-Y. Lin, X. Liu, and H.-S. Xu, Probing charmoniumlike state X(3915) through meson photoproduction, Phys. Rev. D 89(3), 034016 (2014)

    ADS  Article  Google Scholar 

  233. 233.

    Y. Huang, J. He, H.-F. Zhang, and X.-R. Chen, Discovery potential of hidden charm baryon resonances via photoproduction, J. Phys. G 41(11), 115004 (2014)

    ADS  Article  Google Scholar 

  234. 234.

    Q. Wang, X.-H. Liu, and Q. Zhao, Photoproduction of hidden charm pentaquark states Pc/+ (4380) and Pc+(4450), Phys. Rev. D 92, 034022 (2015)

    ADS  Article  Google Scholar 

  235. 235.

    X.-Y. Wang, X.-R. Chen, and A. Guskov, Photoproduction of the charged charmoniumlike Z +c (4200), Phys. Rev. D 92(9), 094017 (2015)

    ADS  Article  Google Scholar 

  236. 236.

    V. Kubarovsky and M. B. Voloshin, Formation of hiddencharm pentaquarks in photon-nucleon collisions, Phys. Rev. D 92(3), 031502 (2015)

    ADS  Article  Google Scholar 

  237. 237.

    M. Karliner and J. L. Rosner, Photoproduction of exotic baryon resonances, Phys. Lett. B 752, 329 (2016)

    ADS  Article  Google Scholar 

  238. 238.

    A. N. H. Blin, C. Fernández-Ramírez, A. Jackura, V. Mathieu, V. I. Mokeev, A. Pilloni, and A. P. Szczepaniak, Studying the Pc(4450) resonance in J/ψ photoproduction off protons, Phys. Rev. D 94(3), 034002 (2016)

    ADS  Article  Google Scholar 

  239. 239.

    Z. E. Meziani, et al., A search for the LHCb charmed “Pentaquark” using photo-production of J/ψ at threshold in hall C at Jefferson Lab, 9 (2016)

  240. 240.

    S. Joosten and Z. E. Meziani, Heavy quarkonium production at threshold: From JLab to EIC, PoS QCDEV2017:017 (2018)

  241. 241.

    E. Ya. Paryev and Yu. T. Kiselev, The role of hiddencharm pentaquark resonance P +c (4450) in J/ψ photoproduction on nuclei near threshold, Nucl. Phys. A 978, 201 (2018)

    ADS  Article  Google Scholar 

  242. 242.

    X.-Y. Wang, X.-R. Chen, and J. He, Possibility to study pentaquark states Pc(4312), Pc(4440), and Pc(4457) in γp → J/ψp reaction, Phys. Rev. D 99(11), 114007 (2019)

    ADS  Article  Google Scholar 

  243. 243.

    V. P. Gonçalves and M. M. Jaime, Photoproduction of pentaquark states at the LHC, Phys. Lett. B 805, 135447 (2020)

    Article  Google Scholar 

  244. 244.

    X.-Y. Wang, J. He, and X. Chen, Systematic study of the production of hidden-bottom pentaquarks via γp and πp scatterings, Phys. Rev. D 101(3), 034032 (2020)

    ADS  Article  Google Scholar 

  245. 245.

    X. Cao, F.-K. Guo, Y.-T. Liang, J.-J. Wu, J.-J. Xie, Y.-P. Xie, Z. Yang, and B.-S. Zou, Photoproduction of hidden-bottom pentaquark and related topics, Phys. Rev. D 101(7), 074010 (2020)

    ADS  Article  Google Scholar 

  246. 246.

    D. Winney, C. Fanelli, A. Pilloni, A. N. H. Blin, C. Fernández-Ramírez, M. Albaladejo, V. Mathieu, V. I. Mokeev, and A. P. Szczepaniak, Double polarization observables in pentaquark photoproduction, Phys. Rev. D 100(3), 034019 (2019)

    ADS  Article  Google Scholar 

  247. 247.

    Y.-P. Xie, X. Cao, Y.-T. Liang, and X. Chen, Pentaquark Pc electroproduction in J/ψ + p channel in electron-proton collisions, arXiv: 2003.11729 [hep-ph] (2020)

  248. 248.

    E. Ya. Paryev, Study of a possibility of observation of hidden-bottom pentaquark resonances in bottomonium photoproduction on protons and nuclei near threshold, arXiv: 2007.01172 [nucl-th] (2020)

  249. 249.

    Z. Yang, X. Cao, Y.-T. Liang, and J.-J. Wu, Identify the hidden charm pentaquark signal from non-resonant background in electron-proton scattering, Chin. Phys. C 44(8), 084102 (2020)

    ADS  Article  Google Scholar 

  250. 250.

    M. Albaladejo, A. N. Hiller Blin, A. Pilloni, D. Winney, C. Fernández-Ramírez, V. Mathieu, and A. Szczepaniak, XYZ spectroscopy at electron-hadron facilities: Exclusive processes, Phys. Rev. D 102, 114010 (2020)

    ADS  Article  Google Scholar 

  251. 251.

    J.-J. Wu and B. S. Zou, Prediction of super-heavy N* and A* resonances with hidden beauty, Phys. Lett. B 709, 70 (2012)

    ADS  Article  Google Scholar 

  252. 252.

    Y.-H. Lin, C.-W. Shen, and B.-S. Zou, Decay behavior of the strange and beauty partners of Pc hadronic molecules, Nucl. Phys. A 980, 21 (2018)

    ADS  Article  Google Scholar 

  253. 253.

    G. Yang, J. Ping, and J. Segovia, Hidden-bottom pentaquarks, Phys. Rev. D 99(1), 014035 (2019)

    ADS  Article  Google Scholar 

  254. 254.

    J. Ferretti, E. Santopinto, M. N. Anwar, and M. A. Bedolla, The baryo-quarkonium picture for hiddencharm and bottom pentaquarks and LHCb Pc(4380) and Pc(4450) states, Phys. Lett. B 789, 562 (2019)

    ADS  Article  Google Scholar 

  255. 255.

    H. Huang and J. Ping, Investigating the hidden-charm and hidden-bottom pentaquark resonances in scattering process, Phys. Rev. D 99(1), 014010 (2019)

    ADS  MathSciNet  Article  Google Scholar 

  256. 256.

    H. Huang, C. Deng, J. Ping, and F. Wang, Possible pentaquarks with heavy quarks, Eur. Phys. J. C 76(11), 624 (2016)

    ADS  Article  Google Scholar 

  257. 257.

    C.-W. Shen, D. Rönchen, Ulf-G. Meißner, and B.-S. Zou, Exploratory study of possible resonances in heavy meson — heavy baryon coupled-channel interactions, Chin. Phys. C 42(2), 023106 (2018)

    ADS  Article  Google Scholar 

  258. 258.

    C. W. Xiao and E. Oset, Hidden beauty baryon states in the local hidden gauge approach with heavy quark spin symmetry, Eur. Phys. J. A 49, 139 (2013)

    ADS  Article  Google Scholar 

  259. 259.

    R. Aaij, et al. (LHCb Collaboration), Study of the line-shape of the χc1(3872) state, Phys. Rev. D 102, 092005

  260. 260.

    R. Aaij, et al. (LHCb Collaboration), Study of the ψ2(3823) and χc1(3872) states in B+ → (J/ψπ+π) K+decays, JHEP 08, 123 (2020)

    ADS  Google Scholar 

  261. 261.

    R. Aaij, et al., Determination of the X(3872) meson quantum numbers, Phys. Rev. Lett. 110, 222001 (2013)

    ADS  Article  Google Scholar 

  262. 262.

    S. K. Choi, et al., Observation of a narrow charmonium — like state in exclusive B±→ K±π+πJ/ψ decays, Phys. Rev. Lett. 91, 262001 (2003)

    ADS  Article  Google Scholar 

  263. 263.

    M. Ablikim, et al., Observation of a charged charmoniumlike structure in e+eπ+πJ/ψ at \(\sqrt s = 4.26\,{\rm{GeV}}\), Phys. Rev. Lett. 110, 252001 (2013)

    ADS  Article  Google Scholar 

  264. 264.

    Z. Q. Liu, et al., Study of e+eπ+πJ/ψ and observation of a charged charmoniumlike state at Belle, Phys. Rev. Lett. 110, 252002 (2013) [Erratum: Phys. Rev. Lett. 111, 019901 (2013)]

    ADS  Article  Google Scholar 

  265. 265.

    T. Xiao, S. Dobbs, A. Tomaradze, and K. K. Seth, Observation of the charged hadron Z ±c (3900) and evidence for the neutral Z 0c (3900) in e+e→ ππJ/ψ at \(\sqrt s = 4170\,{\rm{MeV}}\), Phys. Lett. B 727, 366 (2013)

    ADS  Article  Google Scholar 

  266. 266.

    V. M. Abazov, et al., Properties of Z ±c (3900) produced in pp collision, Phys. Rev. D 100, 012005 (2019)

    ADS  Article  Google Scholar 

  267. 267.

    M. Ablikim, et al., Determination of the spin and parity of the Zc(3900), Phys. Rev. Lett. 119(7), 072001 (2017)

    ADS  Article  Google Scholar 

  268. 268.

    M. Ablikim, et al., Observation of Zc(3900)0 in e+ eπ0π0J/ψ, Phys. Rev. Lett. 115(11), 112003 (2015)

    ADS  Article  Google Scholar 

  269. 269.

    M. Lomnitz and S. Klein, Exclusive vector meson production at an electron-ion collider, Phys. Rev. C 99(1), 015203 (2019)

    ADS  Article  Google Scholar 

  270. 270.

    Z. Yang, X. Yao, F.-K. Guo, and T. Mehen, Lepto-production of hidden-charm exotic hadrons (2020) (in preparation)

  271. 271.

    C. Bignamini, B. Grinstein, F. Piccinini, A. D. Polosa, and C. Sabelli, Is the X(3872) production cross section at tevatron compatible with a hadron molecule interpretation? Phys. Rev. Lett. 103, 162001 (2009)

    ADS  Article  Google Scholar 

  272. 272.

    P. Artoisenet and E. Braaten, Estimating the production rate of loosely-bound hadronic molecules using event generators, Phys. Rev. D 83, 014019 (2011)

    ADS  Article  Google Scholar 

  273. 273.

    F.-K. Guo, Ulf-G. Meißner, and W. Wang, Production of charged heavy quarkonium-like states at the LHC and the tevatron, Commun. Theor. Phys. 61, 354 (2014)

    ADS  Article  Google Scholar 

  274. 274.

    F.-K. Guo, Ulf-G. Meißner, W. Wang, and Z. Yang, Production of the bottom analogs and the spin partner of the X(3872) at hadron colliders, Eur. Phys. J. C 74(9), 3063 (2014)

    ADS  Article  Google Scholar 

  275. 275.

    M. Albaladejo, F.-K. Guo, C. Hanhart, Ulf-G. Meißner, J. Nieves, A. Nogga, and Z. Yang, Note on X(3872) production at hadron colliders and its molecular structure, Chin. Phys. C 41(12), 121001 (2017)

    ADS  Article  Google Scholar 

  276. 276.

    T. Sjöstrand, S. Mrenna, and P. Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05, 026 (2006)

    ADS  MATH  Article  Google Scholar 

  277. 277.

    M.-Z. Liu, Y.-W. Pan, F.-Z. Peng, M. S. Sánchez, L.-S. Geng, A. Hosaka, and M. P. Valderrama, Emergence of a complete heavy-quark spin symmetry multiplet: Seven molecular pentaquarks in light of the latest LHCb analysis, Phys. Rev. Lett. 122(24), 242001 (2019)

    ADS  Article  Google Scholar 

  278. 278.

    M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Remarks on Higgs boson interactions with nucleons, Phys. Lett. 78B, 443 (1978)

    ADS  Article  Google Scholar 

  279. 279.

    C. D. Roberts, Perspective on the origin of hadron masses, Few Body Syst. 58(1), 5 (2017)

    ADS  Article  Google Scholar 

  280. 280.

    C. Lorcé, On the hadron mass decomposition, Eur. Phys. J. C 78(2), 120 (2018)

    ADS  Article  Google Scholar 

  281. 281.

    X.-D. Ji, A QCD analysis of the mass structure of the nucleon, Phys. Rev. Lett. 74, 1071 (1995)

    ADS  Article  Google Scholar 

  282. 282.

    X.-D. Ji, Breakup of hadron masses and energy-momentum tensor of QCD, Phys. Rev. D 52, 271 (1995)

    ADS  Article  Google Scholar 

  283. 283.

    Y.-B. Yang, J. Liang, Y.-J. Bi, Y. Chen, T. Draper, K.-F. Liu, and Z. Liu, Proton mass decomposition from the QCD energy momentum tensor, Phys. Rev. Lett. 121(21), 212001 (2018)

    ADS  Article  Google Scholar 

  284. 284.

    Y.-B. Yang, A. Alexandru, T. Draper, J. Liang, and K.-F. Liu, πN and strangeness sigma terms at the physical point with chiral fermions, Phys. Rev. D 94(5), 054503 (2016)

    ADS  Article  Google Scholar 

  285. 285.

    A. Abdel-Rehim, C. Alexandrou, M. Constantinou, K. Hadjiyiannakou, K. Jansen, Ch. Kallidonis, G. Koutsou, and A. Vaquero Aviles-Casco, Direct evaluation of the quark content of nucleons from lattice QCD at the physical point, Phys. Rev. Lett. 116(25), 252001 (2016)

    ADS  Article  Google Scholar 

  286. 286.

    G. S. Bali, S. Collins, D. Richtmann, A. Schäfer, W. Söldner, and A. Sternbeck, Direct determinations of the nucleon and pion σ terms at nearly physical quark masses, Phys. Rev. D 93(9), 094504 (2016)

    ADS  Article  Google Scholar 

  287. 287.

    Y. Hatta, A. Rajan, and K. Tanaka, Quark and gluon contributions to the QCD trace anomaly, JHEP 12, 008 (2018)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  288. 288.

    K. Tanaka, Three-loop formula for quark and gluon contributions to the QCD trace anomaly, JHEP 01, 120 (2019)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  289. 289.

    X. Ji and Y. Liu, Quantum anomalous energy effects on the nucleon mass, arXiv: 2101.04483 [hep-ph] (2021)

  290. 290.

    S. Rodini, A. Metz, and B. Pasquini, Mass sum rules of the electron in quantum electrodynamics, JHEP 09, 067 (2020)

    ADS  MathSciNet  Article  Google Scholar 

  291. 291.

    A. Metz, B. Pasquini, and S. Rodini, Revisiting the proton mass decomposition, Phys. Rev. D 102(11), 114042 (2021)

    ADS  Article  Google Scholar 

  292. 292.

    B.-D. Sun, Z.-H. Sun, and J. Zhou, Trace anomaly contribution to hydrogen atom mass, arXiv: 2012. 09443v1 [hep-ph]

  293. 293.

    J. Carlson, A. Jaffe, and A. Wiles (Eds.), The Millenium Prize Problems, American Mathematical Society, Providence, 2006

    Google Scholar 

  294. 294.

    D. Kharzeev, Quarkonium interactions in QCD, Proc. Int. Sch. Phys. Fermi 130, 105 (1996)

    Google Scholar 

  295. 295.

    D. Kharzeev, H. Satz, A. Syamtomov, and G. Zinovjev, J/ψ photoproduction and the gluon structure of the nucleon, Eur. Phys. J. C 9, 459 (1999)

    ADS  Article  Google Scholar 

  296. 296.

    R. Boussarie and Y. Hatta, QCD analysis of nearthreshold quarkonium leptoproduction at large photon virtualities, Phys. Rev. D 101(11), 114004 (2020)

    ADS  Article  Google Scholar 

  297. 297.

    J. M. Laget and R. Mendez-Galain, Exclusive photoproduction and electroproduction of vector mesons at large momentum transfer, Nucl. Phys. A 581, 397 (1995)

    ADS  Article  Google Scholar 

  298. 298.

    T. Horn and C. D. Roberts, The pion: An enigma within the Standard Model, J. Phys. G 43(7), 073001 (2016)

    ADS  Article  Google Scholar 

  299. 299.

    J. Volmer, et al., Measurement of the charged pion electromagnetic form-factor, Phys. Rev. Lett. 86, 1713 (2001)

    ADS  Article  Google Scholar 

  300. 300.

    T. Horn, et al., Determination of the charged pion form factor at Q2 = 1.60 and 2.45 (GeV/c)2, Phys. Rev. Lett. 97, 192001 (2006)

    ADS  Article  Google Scholar 

  301. 301.

    V. Tadevosyan, et al., Determination of the pion charge form-factor for Q2 =0.60–1.60 GeV2, Phys. Rev. C 75, 055205 (2007)

    ADS  Article  Google Scholar 

  302. 302.

    T. Horn, et al., Scaling study of the pion electroproduction cross sections and the pion form factor, Phys. Rev. C 78, 058201 (2008)

    ADS  Article  Google Scholar 

  303. 303.

    G. M. Huber, et al., Charged pion form-factor between Q2 = 0.60 GeV2 and 2.45 GeV2 (II): Determination of, and results for, the pion form-factor, Phys. Rev. C 78, 045203 (2008)

    ADS  Article  Google Scholar 

  304. 304.

    H. P. Blok, et al., Charged pion form factor between Q2=0.60 and 2.45 GeV2 (I): Measurements of the cross section for the 1H(e, e′π+)n reaction, Phys. Rev. C 78, 045202 (2008)

    ADS  Article  Google Scholar 

  305. 305.

    J. Badier, et al., Measurement of the K/π structure function ratio using the Drell-Yan process, Phys. Lett. 93B, 354 (1980)

    ADS  Article  Google Scholar 

  306. 306.

    J. Badier, et al., Experimental determination of the π meson structure functions by the Drell-Yan mechanism, Z. Phys. C 18, 281 (1983)

    ADS  Article  Google Scholar 

  307. 307.

    B. Betev, et al., Observation of anomalous scaling violation in muon pair production by 194 GeV/cπ tungsten interactions, Z. Phys. C 28, 15 (1985)

    ADS  Article  Google Scholar 

  308. 308.

    S. Falciano, et al., Angular distributions of muon pairs produced by 194 GeV/c negative pions, Z. Phys. C 31, 513 (1986)

    ADS  Article  Google Scholar 

  309. 309.

    M. Guanziroli, et al., Angular distributions of muon pairs produced by negative pions on deuterium and tungsten, Z. Phys. C 37, 545 (1988)

    ADS  Article  Google Scholar 

  310. 310.

    J. S. Conway, et al., Experimental study of muon pairs produced by 252-GeV pions on tungsten, Phys. Rev. D 39, 92 (1989)

    ADS  Article  Google Scholar 

  311. 311.

    J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay, Evidence for the 2π decay of the K 02 meson, Phys. Rev. Lett. 13, 138 (1964)

    ADS  Article  Google Scholar 

  312. 312.

    A. C. Aguilar, et al., Pion and kaon structure at the electron-ion collider, Eur. Phys. J. A 55(10), 190 (2019)

    ADS  Article  Google Scholar 

  313. 313.

    C. D. Roberts and S. M. Schmidt, Reflections upon the emergence of hadronic mass, arXiv: 2006.08782 (2020)

  314. 314.

    S. Chekanov, et al., Leading neutron production in e+ p collisions at HERA, Nucl. Phys. B 637, 3 (2002)

    ADS  Article  Google Scholar 

  315. 315.

    F. D. Aaron, et al., Measurement of leading neutron production in deep-inelastic scattering at HERA, Eur. Phys. J. C 68, 381 (2010)

    ADS  Article  Google Scholar 

  316. 316.

    S.-X. Qin, C. Chen, C. Mezrag, and C. D. Roberts, Offshell persistence of composite pions and kaons, Phys. Rev. C 97(1), 015203 (2018)

    ADS  Article  Google Scholar 

  317. 317.

    G. M. Huber, D. Gaskell, et al., Jefferson Lab Experiment E12-06-101 (2006)

  318. 318.

    T. Horn, G. M. Huber, et al., Scaling study of the L/T-separated pion electroproduction cross section at 11 GeV, approved Jefferson Lab 12 GeV Experiment E12-07-105 (2007)

  319. 319.

    D. Adikaram, et al., Measurement of Tagged Deep Inelastic Scattering (TDIS), approved Jefferson Lab experiment E12-15-006 (2015)

  320. 320.

    J. Annand, et al., Measurement of kaon structure function through tagged deep inelastic scattering (TDIS), approved Jefferson Lab experiment C12-15-006A (2017)

  321. 321.

    D. Gaskell, et al., Jefferson Lab Experiment E12-19-006 (2019)

  322. 322.

    M. Guidal, J. M. Laget, and M. Vanderhaeghen, Pseudoscalar meson photoproduction at high-energies: From the Regge regime to the hard scattering regime, Phys. Lett. B 400, 6 (1997)

    ADS  Article  Google Scholar 

  323. 323.

    M. Vanderhaeghen, M. Guidal, and J. M. Laget, Regge description of charged pseudoscalar meson electroproduction above the resonance region, Phys. Rev. C 57, 1454 (1998)

    ADS  Article  Google Scholar 

  324. 324.

    T. K. Choi, K. J. Kong, and B. G. Yu, Pion and proton form factors in the Regge description of electroproduction p(e,e′π+)n, J. Korean Phys. Soc. 67(7), 1089 (2015)

    ADS  Article  Google Scholar 

  325. 325.

    R. J. Perry, A. Kizilersü, and A. W. Thomas, An improved hadronic model for pion electroproduction, Phys. Lett. B 807, 135581 (2020)

    Article  Google Scholar 

  326. 326.

    M. Gluck, E. Reya, and I. Schienbein, Pionic parton distributions revisited, Eur. Phys. J. C 10, 313 (1999)

    ADS  Article  Google Scholar 

  327. 327.

    G. P. Lepage and S. J. Brodsky, Exclusive processes in quantum chromodynamics: Evolution equations for hadronic wave functions and the form-factors of mesons, Phys. Lett. B 87, 359 (1979)

    ADS  Article  Google Scholar 

  328. 328.

    G. P. Lepage and S. J. Brodsky, Exclusive processes in perturbative quantum chromodynamics, Phys. Rev. D 22, 2157 (1980)

    ADS  Article  Google Scholar 

  329. 329.

    S. J. Brodsky, Light cone quantized QCD and novel hadron phenomenology, in: QCD light cone physics and hadron phenomenology, Proceedings, 10th Nuclear Summer School and Symposium, NuSS’97, Seoul, Korea, June 23–28, 1997, pp 1–64 (1997)

  330. 330.

    V. N. Gribov and L. N. Lipatov, Deep inelastic ep scattering in perturbation theory, Sov. J. Nucl. Phys. 15, 438 (1972) [Yad. Fiz. 15, 781 (1972)]

    Google Scholar 

  331. 331.

    G. Altarelli and G. Parisi, Asymptotic freedom in parton language, Nucl. Phys. B 126, 298 (1977)

    ADS  Article  Google Scholar 

  332. 332.

    Y. L. Dokshitzer, Calculation of the structure functions for deep inelastic scattering and e+ e− annihilation by perturbation theory in quantum chromodynamics, Sov. Phys. JETP 46, 641 (1977) [Zh. Eksp. Teor. Fiz. 73, 1216 (1977)]

    ADS  Google Scholar 

  333. 333.

    R. D. Field, Applications of Perturbative QCD, Volume 77 (1989)

  334. 334.

    D. Drijard, et al., Observation of charmed d meson production in pp collisions, Phys. Lett. B 81, 250 (1979)

    ADS  Article  Google Scholar 

  335. 335.

    K. L. Giboni, et al., Diffractive production of the charmed baryon Γ +c at the CERN ISR, Phys. Lett. B 85, 437 (1979)

    ADS  Article  Google Scholar 

  336. 336.

    W. S. Lockman, T. Meyer, J. Rander, P. Schlein, R. Webb, S. Erhan, and J. Zsembery, Evidence for Γ{c/+} in inclusive pp → Λ° π+π+π + X and pp →(Kπ+p) + X at \(\sqrt s = 53{\rm{ - GeV}}\) and 62-GeV, Phys. Lett. B 85, 443 (1979)

    ADS  Article  Google Scholar 

  337. 337.

    D. Drijard, et al., Charmed baryon production at the cern intersecting storage rings, Phys. Lett. B 85, 452 (1979)

    ADS  Article  Google Scholar 

  338. 338.

    H.M. Georgi, S. L. Glashow, M. E. Machacek, and D. V Nanopoulos, Charmed particles from two-gluon annihilation in proton proton collisions, Ann. Phys. 114, 273 (1978)

    ADS  Article  Google Scholar 

  339. 339.

    S. J. Brodsky, P. Hoyer, C. Peterson, and N. Sakai, The intrinsic charm of the proton, Phys. Lett. B 93, 451 (1980)

    ADS  Article  Google Scholar 

  340. 340.

    S. J. Brodsky, C. Peterson, and N. Sakai, Intrinsic heavy quark states, Phys. Rev. D 23, 2745 (1981)

    ADS  Article  Google Scholar 

  341. 341.

    S. J. Brodsky, A. Kusina, F. Lyonnet, I. Schienbein, H. Spiesberger, and R. Vogt, A review of the intrinsic heavy quark content of the nucleon, Adv. High Energy Phys. 2015, 231547 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  342. 342.

    J. J. Aubert, et al., An experimental limit on the intrinsic charm component of the nucleon, Phys. Lett. B 110, 73 (1982)

    ADS  Article  Google Scholar 

  343. 343.

    B. W. Harris, J. Smith, and R. Vogt, Reanalysis of the EMC charm production data with extrinsic and intrinsic charm at NLO, Nucl. Phys. B 461, 181 (1996)

    ADS  Article  Google Scholar 

  344. 344.

    V. M. Abazov, et al., Measurement of γ + b + X and γ + c + X production cross sections in \(p\bar p\) collisions at \(\sqrt s = 1.96\,{\rm{TeV}}\), Phys. Rev. Lett. 102, 192002 (2009)

    ADS  Article  Google Scholar 

  345. 345.

    E. M Aitala, et al., Asymmetries in the production of Γ +c and Γ c baryons in 500-GeV/c π-nucleon interactions, Phys. Lett. B 495, 42 (2000)

    ADS  Article  Google Scholar 

  346. 346.

    E. M. Aitala, et al., Differential cross-sections, charge production asymmetry, and spin density matrix elements for D*± (2010) produced in 500-GeV/c π-nucleon interactions, Phys. Lett. B 539, 218 (2002)

    ADS  Article  Google Scholar 

  347. 347.

    C.-H. Chang, J.-P. Ma, C.-F. Qiao, and X.-G. Wu, Hadronic production of the doubly charmed baryon Ξcc+ with intrinsic charm, J. Phys. G 34, 845 (2007)

    Article  Google Scholar 

  348. 348.

    G. Chen, X.-G. Wu, and S. Xu, Impacts of the intrinsic charm content of the proton on the Ξcc hadroproduction at a fixed target experiment at the LHC, Phys. Rev. D 100(5), 054022 (2019)

    ADS  Article  Google Scholar 

  349. 349.

    G. Chen, X.-G. Wu, J.-W. Zhang, H.-Y. Han, and H.-B. Fu, Hadronic production of Ξcc at a fixed-target experiment at the LHC, Phys. Rev. D 89(7), 074020 (2014)

    ADS  Article  Google Scholar 

  350. 350.

    C.-H. Chang, J.-X. Wang, and X.-G. Wu, GENXICC: A generator for hadronic production of the double heavy baryons Ξcc, Ξbc and Ξbb}} Comput. Phys. Commun. 177, 467 (2007)

    ADS  Article  Google Scholar 

  351. 351.

    C.-H. Chang, J.-X. Wang, and X.-G. Wu, GENXICC2.0: An upgraded version of the generator for hadronic production of double heavy baryons Ξcc, Ξbc and Ξbb, Comput. Phys. Commun. 181, 1144 (2010)

    ADS  MATH  Article  Google Scholar 

  352. 352.

    X.-Y. Wang and X.-G. Wu, GENXICC2.1: An improved version of genxicc for hadronic production of doubly heavy baryons, Comput. Phys. Commun. 184, 1070 (2013)

    ADS  Article  Google Scholar 

  353. 353.

    X.-G. Wu, BCVEGPY and GENXICC for the hadronic production of the doubly heavy mesons and baryons, J. Phys. Conf. Ser. 523, 012042 (2014)

    Article  Google Scholar 

  354. 354.

    S. J. Brodsky, F. Fleuret, C. Hadjidakis, and J. P. Lansberg, Physics opportunities of a fixed-target experiment using the LHC beams, Phys. Rep. 522, 239 (2013)

    ADS  Article  Google Scholar 

  355. 355.

    C. Hadjidakis, et al., A fixed-target programme at the LHC: Physics case and projected performances for heavyion, hadron, spin and astroparticle studies, Phys. Rep. 911, 1 (2018)

    ADS  Article  Google Scholar 

  356. 356.

    J. P. Lansberg, et al., A fixed-target experiment at the LHC (AFTER@LHC): Luminosities, target polarisation and a selection of physics studies, PoS QNP2012, 049 (2012)

    Google Scholar 

  357. 357.

    J. P. Lansberg, et al., Prospects for a fixed-target experiment at the LHC: AFTER@LHC, PoS ICHEP2012: 547 (2013)

  358. 358.

    J. P. Lansberg, et al., AFTER@LHC: A precision machine to study the interface between particle and nuclear physics, EPJ Web Conf. 66, 11023 (2014)

    Article  Google Scholar 

  359. 359.

    G. T. Bodwin, E. Braaten, and G. P. Lepage, Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium, Phys. Rev. D 51, 1125 (1995)

    ADS  Article  Google Scholar 

  360. 360.

    R. Aaij, et al., Observation of the doubly charmed baryon Ξ ++cc , Phys. Rev. Lett. 119(11), 112001 (2017)

    ADS  Article  Google Scholar 

  361. 361.

    R. Aaij, et al., Search for the doubly charmed baryon Ξ +cc , Sci. China Phys. Mech. Astron. 63(2), 221062 (2020)

    ADS  Article  Google Scholar 

  362. 362.

    M. Mattson, et al., First observation of the doubly charmed baryon Ξ +cc , Phys. Rev. Lett. 89, 112001 (2002)

    ADS  Article  Google Scholar 

  363. 363.

    A. Ocherashvili, et al., Confirmation of the double charm baryon Ξ +cc (3520) via its decay to pD+K−, Phys. Lett. B 628, 18 (2005)

    ADS  Article  Google Scholar 

  364. 364.

    H.-W. Lin, et al., Parton distributions and lattice QCD calculations: A community white paper, Prog. Part. Nucl. Phys. 100, 107 (2018)

    ADS  Article  Google Scholar 

  365. 365.

    S. Aoki, et al., FLAG review 2019: Flavour Lattice Averaging Group (FLAG), Eur. Phys. J. C 80(2), 113 (2020)

    ADS  Article  Google Scholar 

  366. 366.

    C. Alexandrou, M. Constantinou, K. Hadjiyiannakou, K. Jansen, C. Kallidonis, G. Koutsou, A. V. Avilés-Casco, and C. Wiese, Nucleon spin and momentum decomposition using lattice QCD simulations, Phys. Rev. Lett. 119(14), 142002 (2017)

    ADS  Article  Google Scholar 

  367. 367.

    J. Liang, Y.-B. Yang, T. Draper, M. Gong, and K.-F. Liu, Quark spins and anomalous ward identity, Phys. Rev. D 98(7), 074505 (2018)

    ADS  Article  Google Scholar 

  368. 368.

    H.-W. Lin, R. Gupta, B. Yoon, Y.-C. Jang, and T. Bhattacharya, Quark contribution to the proton spin from 2+1+1-flavor lattice QCD, Phys. Rev. D 98(9), 094512 (2018)

    ADS  Article  Google Scholar 

  369. 369.

    D. de Florian, R. Sassot, M. Stratmann, and W. Vogelsang, Evidence for polarization of gluons in the proton, Phys. Rev. Lett. 113(1), 012001 (2014)

    ADS  Article  Google Scholar 

  370. 370.

    Y.-B. Yang, R. S. Sufian, A. Alexandru, T. Draper, M. J. Glatzmaier, K.-F. Liu, and Y. Zhao, Glue spin and helicity in the proton from lattice QCD, Phys. Rev. Lett. 118(10), 102001 (2017)

    ADS  Article  Google Scholar 

  371. 371.

    Y.-B. Yang, A lattice story of proton spin, PoS LATTICE2018:017 (2019)

  372. 372.

    R. L. Jaffe and A. Manohar, The G(1) problem: fact and fantasy on the spin of the proton, Nucl. Phys. B 337, 509 (1990)

    ADS  Article  Google Scholar 

  373. 373.

    M. Deka, et al., Lattice study of quark and glue momenta and angular momenta in the nucleon, Phys. Rev. D 91(1), 014505 (2015)

    ADS  Article  Google Scholar 

  374. 374.

    C. Alexandrou, S. Bacchio, M. Constantinou, J. Finkenrath, K. Hadjiyiannakou, K. Jansen, G. Koutsou, H. Panagopoulos, and G. Spanoudes, Complete flavor decomposition of the spin and momentum fraction of the proton using lattice QCD simulations at physical pion mass, Phys. Rev. D 101(9), 094513 (2020)

    ADS  Article  Google Scholar 

  375. 375.

    M. Engelhardt, J. Green, N. Hasan, S. Krieg, S. Meinel, J. Negele, A. Pochinsky, and S. Syritsyn, Quark orbital angular momentum in the proton evaluated using a direct derivative method, PoS LATTICE2018:115 (2018)

  376. 376.

    M. Engelhardt, Quark orbital dynamics in the proton from Lattice QCD — from Ji to Jaffe-Manohar orbital angular momentum, Phys. Rev. D 95(9), 094505 (2017)

    ADS  Article  Google Scholar 

  377. 377.

    X. Ji, Parton physics on a euclidean lattice, Phys. Rev. Lett. 110, 262002 (2013)

    ADS  Article  Google Scholar 

  378. 378.

    Y.-Q. Ma and J.-W. Qiu, Extracting parton distribution functions from lattice QCD calculations, Phys. Rev. D 98(7), 074021 (2018)

    ADS  MathSciNet  Article  Google Scholar 

  379. 379.

    A. Radyushkin, Nonperturbative evolution of parton quasi-distributions, Phys. Lett. B 767, 314 (2017)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  380. 380.

    X. Ji, Y.-S. Liu, Y. Liu, J.-H. Zhang, and Y. Zhao, large-momentum effective theory, arXiv: 2004.03543 (2020)

  381. 381.

    H.-W. Lin, J.-W. Chen, X. Ji, L. Jin, R. Li, Y.-S. Liu, Y.-B. Yang, J.-H. Zhang, and Y. Zhao, Proton isovector helicity distribution on the lattice at physical pion mass, Phys. Rev. Lett. 121(24), 242003 (2018)

    ADS  Article  Google Scholar 

  382. 382.

    C. Alexandrou, K. Cichy, M. Constantinou, K. Jansen, A. Scapellato, and F. Steffens, Light-cone parton distribution functions from lattice QCD, Phys. Rev. Lett. 121(11), 112001 (2018)

    ADS  Article  Google Scholar 

  383. 383.

    C. Alexandrou, K. Cichy, M. Constantinou, K. Jansen, A. Scapellato, and F. Steffens, Transversity parton distribution functions from lattice QCD, Phys. Rev. D 98(9), 091503 (2018)

    ADS  Article  Google Scholar 

  384. 384.

    J. Liang, M. Sun, Y.-B. Yang, T. Draper, and K.-F. Liu, Ratio of strange to u/d momentum fraction in disconnected insertions, Phys. Rev. D 102(3), 034514 (2020)

    ADS  Article  Google Scholar 

  385. 385.

    J.-W. Chen, H.-W. Lin, and J.-H. Zhang, Pion generalized parton distribution from lattice QCD, Nucl. Phys. B 952, 114940 (2020)

    MathSciNet  Article  Google Scholar 

  386. 386.

    X. Ji, Y. Liu, and Y.-S. Liu, Transverse-momentum-dependent PDFs from large-momentum effective theory, arXiv: 1911.03840 (2019)

  387. 387.

    P. Shanahan, M. Wagman, and Y. Zhao, Collins-Soper kernel for TMD evolution from lattice QCD, Phys. Rev. D 102, 014511

  388. 388.

    Q.-A. Zhang, et al., Lattice-QCD calculations of TMD soft function through large-momentum effective theory, arXi: 2005.14572, (2020)

  389. 389.

    A. C. Benvenuti, et al., Nuclear effects in deep inelastic muon scattering on deuterium and iron targets, Phys. Lett. B 189(4), 483 (1987)

    ADS  Article  Google Scholar 

  390. 390.

    W. Detmold, M. Illa, D. J. Murphy, P. Oare, K. Orginos, P. E. Shanahan, M. L. Wagman, and F. Winter, Lattice QCD constraints on the parton distribution functions of 3He, arXiv: 2009.05522 (2020)

  391. 391.

    T. Yamazaki, Y. Kuramashi, and A. Ukawa, Helium nuclei in quenched lattice QCD, Phys. Rev. D 81, 111504 (2010)

    ADS  Article  Google Scholar 

  392. 392.

    T. Iritani, S. Aoki, T. Doi, S. Gongyo, T. Hatsuda, Y. Ikeda, T. Inoue, N. Ishii, H. Nemura, and K. Sasaki, Systematics of the HAL QCD potential at low energies in lattice QCD, Phys. Rev. D 99(1), 014514 (2019)

    ADS  Article  Google Scholar 

  393. 393.

    M. Luscher, Two particle states on a torus and their relation to the scattering matrix, Nucl. Phys. B 354, 531 (1991)

    ADS  MathSciNet  Article  Google Scholar 

  394. 394.

    L. Liu, G. Moir, M. Peardon, S. M. Ryan, C. E. Thomas, P. Vilaseca, J. J. Dudek, R. G. Edwards, B. Joo, and D. G. Richards, Excited and exotic charmonium spectroscopy from lattice QCD, JHEP 07, 126 (2012)

    ADS  Article  Google Scholar 

  395. 395.

    S. Prelovsek, C. B. Lang, L. Leskovec, and D. Mohler, Study of the Z +c channel using lattice QCD, Phys. Rev. D 91(1), 014504 (2015)

    ADS  Article  Google Scholar 

  396. 396.

    Y. Chen, et al., Low-energy scattering of the \({(D{\bar D^ * })^ \pm }\) system and the resonance-like structure Zc(3900), Phys. Rev. D 89(9), 094506 (2014)

    ADS  Article  Google Scholar 

  397. 397.

    Y. Ikeda, S. Aoki, T. Doi, S. Gongyo, T. Hatsuda, T. Inoue, T. Iritani, N. Ishii, K. Murano, and K. Sasaki, Fate of the tetraquark candidate Zc(3900) from lattice QCD, Phys. Rev. Lett. 117(24), 242001 (2016)

    ADS  Article  Google Scholar 

  398. 398.

    M. S. Bhagwat, M. A. Pichowsky, C. D. Roberts, and P. C. Tandy, Analysis of a quenched lattice QCD dressed quark propagator, Phys. Rev. C 68, 015203 (2003)

    ADS  Article  Google Scholar 

  399. 399.

    P. O. Bowman, Urs M. Heller, D. B. Leinweber, M. B. Parappilly, A. G. Williams, and J.-B. Zhang, Unquenched quark propagator in Landau gauge, Phys. Rev. D 71, 054507 (2005)

    ADS  Article  Google Scholar 

  400. 400.

    M. S. Bhagwat and P. C. Tandy, Analysis of full-QCD and quenched-QCD lattice propagators, AIP Conf. Proc. 842(1), 225 (2006)

    ADS  Article  Google Scholar 

  401. 401.

    P. Maris, C. D. Roberts, and P. C. Tandy, Pion mass and decay constant, Phys. Lett. B 420, 267 (1998)

    ADS  Article  Google Scholar 

  402. 402.

    S.-X. Qin, C. D. Roberts, and S. M. Schmidt, Ward-Green-Takahashi identities and the axial-vector vertex, Phys. Lett. B 733, 202 (2014)

    ADS  MATH  Article  Google Scholar 

  403. 403.

    D. Binosi, L. Chang, J. Papavassiliou, S.-X. Qin, and C. D. Roberts, Symmetry preserving truncations of the gap and Bethe-Salpeter equations, Phys. Rev. D 93(9), 096010 (2016)

    ADS  Article  Google Scholar 

  404. 404.

    C. D. Roberts, Three lectures on hadron physics, J. Phys. Conf. Ser. 706(2), 022003 (2016)

    Article  Google Scholar 

  405. 405.

    G. Eichmann, H. Sanchis-Alepuz, R. Williams, R. Alkofer, and C. S. Fischer, Baryons as relativistic three-quark bound states, Prog. Part. Nucl. Phys. 91, 1 (2016)

    ADS  Article  Google Scholar 

  406. 406.

    V. D. Burkert and C. D. Roberts, Roper resonance: Toward a solution to the fifty year puzzle, Rev. Mod. Phys. 91(1), 011003 (2019)

    ADS  MathSciNet  Article  Google Scholar 

  407. 407.

    S.-X. Qin and C. D. Roberts, Impressions of the continuum bound state problem in QCD, arXiv: 2008.07629 (2020)

  408. 408.

    Z.-F. Cui, J.-L. Zhang, D. Binosi, F. de Soto, C. Mezrag, J. Papavassiliou, C. D Roberts, J. Rodríguez-Quintero, J. Segovia, and S. Zafeiropoulos, Effective charge from lattice QCD, Chin. Phys. C 44(8), 083102 (2020)

    ADS  Article  Google Scholar 

  409. 409.

    C. D Roberts, Insights into the origin of mass, in: 27th International Nuclear Physics Conference (INPC 2019) Glasgow, Scotland, United Kingdom, July 29-August 2, 2019 (2019)

  410. 410.

    A. V. Efremov and A. V. Radyushkin, Factorization and asymptotical behavior of pion form-factor in QCD, Phys. Lett. 94B, 245 (1980)

    ADS  Article  Google Scholar 

  411. 411.

    F. Gao, L. Chang, Y.-X. Liu, C. D. Roberts, and Peter C. Tandy. Exposing strangeness: Projections for kaon electromagnetic form factors, Phys. Rev. D 96(3), 034024 (2017)

    ADS  Article  Google Scholar 

  412. 412.

    Z. F. Ezawa, Wide-angle scattering in softened field theory, Nuovo Cim. A 23, 271 (1974)

    ADS  Article  Google Scholar 

  413. 413.

    G. R. Farrar and D. R. Jackson, Pion and nucleon structure functions near x = 1, Phys. Rev. Lett. 35, 1416 (1975)

    ADS  Article  Google Scholar 

  414. 414.

    E. L. Berger and S. J. Brodsky, Quark structure functions of mesons and the Drell-Yan process, Phys. Rev. Lett. 42, 940 (1979)

    ADS  Article  Google Scholar 

  415. 415.

    R. J. Holt and C. D. Roberts, Distribution functions of the nucleon and pion in the valence region, Rev. Mod. Phys. 82, 2991 (2010)

    ADS  Article  Google Scholar 

  416. 416.

    M. B. Hecht, C. D. Roberts, and S. M. Schmidt, Valence quark distributions in the pion, Phys. Rev. C 63, 025213 (2001)

    ADS  Article  Google Scholar 

  417. 417.

    K. Wijesooriya, P. E. Reimer, and R. J. Holt, The pion parton distribution function in the valence region, Phys. Rev. C 72, 065203 (2005)

    ADS  Article  Google Scholar 

  418. 418.

    M. Aicher, A. Schafer, and W. Vogelsang, Soft-gluon resummation and the valence parton distribution function of the pion, Phys. Rev. Lett. 105, 252003 (2010)

    ADS  Article  Google Scholar 

  419. 419.

    M. Ding, K. Raya, D. Binosi, L. Chang, C. D. Roberts, and S. M. Schmidt, Drawing insights from pion parton distributions, Chin. Phys. 44(3), 031002 (2020)

    ADS  Article  Google Scholar 

  420. 420.

    M. Ding, K. Raya, D. Binosi, L. Chang, C. D. Roberts, and S. M. Schmidt, Symmetry, symmetry breaking, and pion parton distributions, Phys. Rev. D 101(5), 054014 (2020)

    ADS  Article  Google Scholar 

  421. 421.

    P. C. Barry, N. Sato, W. Melnitchouk, and C.-R. Ji, First Monte Carlo global QCD analysis of pion parton distributions, Phys. Rev. Lett. 121(15), 152001 (2018)

    ADS  Article  Google Scholar 

  422. 422.

    J.-H. Zhang, J.-W. Chen, L. Jin, H.-W Lin, A. Schäfer, and Y. Zhao, First direct lattice-QCD calculation of the x-dependence of the pion parton distribution function, Phys. Rev. D 100(3), 034505 (2019)

    ADS  Article  Google Scholar 

  423. 423.

    M. Oehm, C. Alexandrou, M. Constantinou, K. Jansen, G. Koutsou, B. Kostrzewa, F. Steffens, C. Urbach, and S. Zafeiropoulos, 〈x〉 and 〈x2〉 of the pion PDF from lattice QCD with Nf = 2 + 1 + 1 dynamical quark flavors, Phys. Rev. D 99(1), 014508 (2019)

    ADS  Article  Google Scholar 

  424. 424.

    N. Karthik, T. Izubichi, L. Jin, C. Kallidonis, S. Mukherjee, P. Petreczky, C. Shugert, and S. Syritsyn, Renormalized quasi parton distribution function of pion, PoS LATTICE2018:109 (2019)

  425. 425.

    R. S. Sufian, J. Karpie, C. Egerer, K. Orginos, J.-W. Qiu, and D. G. Richards, Pion valence quark distribution from matrix element calculated in lattice QCD, Phys. Rev. D 99(7), 074507 (2019)

    ADS  Article  Google Scholar 

  426. 426.

    L. Chang, I. C. Cloet, J. J. Cobos-Martinez, C. D. Roberts, S. M. Schmidt, and P. C. Tandy, Imaging dynamical chiral symmetry breaking: Pion wave function on the light front, Phys. Rev. Lett. 110(13), 132001 (2013)

    ADS  Article  Google Scholar 

  427. 427.

    P. J. Sutton, A. D. Martin, R. G. Roberts, and W. J. Stirling, Parton distributions for the pion extracted from Drell-Yan and prompt photon experiments, Phys. Rev. D 45, 2349 (1992)

    ADS  Article  Google Scholar 

  428. 428.

    B. Adams, et al., Letter of Intent: A New QCD facility at the M2 beam line of the CERN SPS, arXiv: 1808.00848V6 (2018)

  429. 429.

    W.-C. Chang, J.-C. Peng, S. Platchkov, and T. Sawada, Constraining gluon density of pions at large x by pion-induced J/ψ production, Phys. Rev. D 102, 054024

  430. 430.

    J. T. Londergan, G. Q. Liu, E. N. Rodionov, and A. W. Thomas, Probing the pion sea with π-D Drell-Yan processes, Phys. Lett. B 361, 110 (1995)

    ADS  Article  Google Scholar 

  431. 431.

    Z.-F. Cui, M. Ding, F. Gao, K. Raya, D. Binosi, L. Chang, C. D. Roberts, J. Rodríguez-Quintero, and S. M. Schmidt, Kaon parton distributions: Revealing Higgs modulation of emergent mass, arXiv: 2006.14075 (2020)

  432. 432.

    Z.-F. Cui, M. Ding, F. Gao, K. Raya, D. Binosi, L. Chang, C. D. Roberts, J. Rodríguez-Quintero, and S. M. Schmidt, Kaon and pion parton distributions, Eur. Phys. J. C 80(11), 1064 (2020)

    ADS  Article  Google Scholar 

  433. 433.

    X. Chen, F.-K. Guo, C. D. Roberts, and R. Wang, Selected science opportunities for the EicC, Few Body Syst. 61(4), 43 (2020)

    ADS  Article  Google Scholar 

  434. 434.

    Q.-W. Wang, S.-X. Qin, C. D. Roberts, and S. M. Schmidt, Proton tensor charges from a Poincaré-covariant Faddeev equation, Phys. Rev. D 98(5), 054019 (2018)

    ADS  Article  Google Scholar 

  435. 435.

    C. D. Roberts, R. J. Holt, and S. M. Schmidt, Nucleon spin structure at very high x, Phys. Lett. B 727, 249 (2013)

    ADS  Article  Google Scholar 

  436. 436.

    C. Mezrag, L. Chang, H. Moutarde, C. D. Roberts, J. Rodríguez-Quintero, F. Sabatié, and S. M. Schmidt, Sketching the pion’s valence-quark generalised parton distribution, Phys. Lett. B 741, 190 (2015)

    ADS  MATH  Article  Google Scholar 

  437. 437.

    C. Mezrag, H. Moutarde, and J. Rodriguez-Quintero, From Bethe-Salpeter wave functions to generalised parton distributions, Few Body Syst. 57(9), 729 (2016)

    ADS  Article  Google Scholar 

  438. 438.

    N. Chouika, C. Mezrag, H. Moutarde, and J. Rodríguez-Quintero, A Nakanishi-based model illustrating the covariant extension of the pion GPD overlap representation and its ambiguities, Phys. Lett. B 780, 287 (2018)

    ADS  MATH  Article  Google Scholar 

  439. 439.

    S.-S. Xu, L. Chang, C. D. Roberts, and H.-S. Zong, Pion and kaon valence-quark parton quasidistributions, Phys. Rev. D 97(9), 094014 (2018)

    ADS  Article  Google Scholar 

  440. 440.

    C. Shi and I. C. Cloët, Intrinsic transverse motion of the pion’s valence quarks, Phys. Rev. Lett. 122(8), 082301 (2019)

    ADS  Article  Google Scholar 

  441. 441.

    R. D. Field and R. P. Feynman, A parametrization of the properties of quark jets, Nucl. Phys. B 136, 1 (1978)

    ADS  Article  Google Scholar 

  442. 442.

    I. Alekseev, C. Allgower, M. Bai, Y. Batygin, L. Bozano, K. Brown, G. Bunce, P. Cameron, E. Courant, S. Erin, et al., Polarized proton collider at RHIC, Nuclear Instruments and Methods in Physics Research Section A 499(2-3), 392 (2003)

    ADS  Article  Google Scholar 

  443. 443.

    L. J. Mao, J. C. Yang, J. W. Xia, X. D. Yang, Y. J. Yuan, J. Li, X. M. Ma, T. L. Yan, D. Y. Yin, W. P. Chai, et al., Electron cooling system in the booster synchrotron of the HIAF project, Nuclear Instruments and Methods in Physics Research Section A 786, 91 (2015)

    ADS  Article  Google Scholar 

  444. 444.

    A. Zelenski, Review of polarized ion sources, Review of Scientific Instruments 81(2), 02B308 (2010)

    Article  Google Scholar 

  445. 445.

    E. Tsentalovich, J. Bessuille, E. Ihloff, J. Kelsey, R. Redwine, and C. Vidal, High intensity polarized electron source, Nuclear Instruments and Methods in Physics Research Section A 947, 162734 (2019)

    Article  Google Scholar 

  446. 446.

    D. W. Higinbotham, Electron spin precession at CEBAF, AIP Conf. Proc. 1149(1), 751 (2009)

    ADS  Article  Google Scholar 

  447. 447.

    U. Fano, Remarks on the classical and quantummechanical treatment of partial polarization, JOSA 39(10), 859 (1949)

    ADS  Article  Google Scholar 

  448. 448.

    J. R. Johnson, R. Prepost, D. E. Wiser, J. J. Murray, R. F. Schwitters, and C. K. Sinclair, Beam polarization measurements at the spear storage ring, Nuclear Instruments and Methods in Physics Research 204(2-3), 261 (1983)

    ADS  Article  Google Scholar 

  449. 449.

    S. Abeyratne, A. Accardi, S. Ahmed, D. Barber, J. Bisognano, A. Bogacz, A. Castilla, P. Chevtsov, S. Corneliussen, W. Deconinck, et al., Science requirements and conceptual design for a polarized medium energy electron-ion collider at Jefferson lab, arXiv: 1209.0757 (2012)

  450. 450.

    K. Akai and Y. Morita, New design of crab cavity for superkekb, in: Proceedings of the 2005 Particle Accelerator Conference, pp 1129–1131, IEEE (2005)

  451. 451.

    T. Sjostrand, P. Eden, C. Friberg, L. Lonnblad, G. Miu, S. Mrenna, and E. Norrbin, High-energy physics event generation with PYTHIA 6.1, Comput. Phys. Commun. 135, 238 (2001)

    ADS  MATH  Article  Google Scholar 

  452. 452.

    N. Minafra, Beam impedance optimization of the TOTEM roman pots, in: 6th International Particle Accelerator Conference, p. MOPJE064 (2015)

  453. 453.

    M. Steigerwald, MeV Mott polarimetry at Jefferson lab, AIP Conf. Proc. 570(1), 935 (2001)

    ADS  Article  Google Scholar 

  454. 454.

    M. Hauger, et al., A high precision polarimeter, Nucl. Instrum. Meth. A 462, 382 (2001)

    ADS  Article  Google Scholar 

  455. 455.

    J. A. Magee, A. Narayan, D. Jones, R. Beminiwattha, J. C. Cornejo, et al., A novel comparison of moller and compton electron-beam polarimeters, Phys. Lett. B 766, 339 (2017)

    ADS  Article  Google Scholar 

  456. 456.

    I. Nakagawa, I. Alekseev, A. Bravar, G. Bunce, S. Dhawan, K. O. Eyser, R. Gill, W. Haeberli, H. Huang, O. Jinnouchi, Y. Makdisi, A. Nass, H. Okada, E. Stephenson, D. Svirida, T. Wise, J. Wood, and A. Zelenski, Polarization measurements of RHIC-pp RUN05 using CNI pC-polarimeter, AIP Conf. Proc. 915(1), 912 (2007)

    ADS  Article  Google Scholar 

  457. 457.

    I. G. Alekseev, A. Bravar, G. Bunce, et al., Measurements of single and double spin asymmetry in pp elastic scattering in the CNI region with a polarized atomic hydrogen gas jet target, Phys. Rev. D 79, 094014 (2009)

    ADS  Article  Google Scholar 

  458. 458.

    G. Contin, The MAPS-based vertex detector for the STAR experiment: Lessons learned and performance, Nucl. Instrum. Meth. A 831, 7 (2016)

    ADS  Article  Google Scholar 

  459. 459.

    R. Dupré, S. Stepanyan, M. Hattawy, N. Baltzell, K. Hafidi, M. Battaglieri, S. Bueltmann, A. Celentano, R. De Vita, A. El Alaoui, L. El Fassi, H. Fenker, K. Kosheleva, S. Kuhn, P. Musico, S. Minutoli, M. Oliver, Y. Perrin, B. Torayev, and E. Voutier, A radial time projection chamber for α detection in CLAS at Jlab, Nuclear Instruments and Methods in Physics Research Section A 898, 90 (2018)

    ADS  Article  Google Scholar 

  460. 460.

    F. Sauli, The gas electron multiplier (GEM): Operating principles and applications, Nuclear Instruments and Methods in Physics Research Section A 805, 2 (2016), Special issue in memory of G. F. Knoll

    ADS  Article  Google Scholar 

  461. 461.

    W. Erni, et al., Technical design report for the PANDA (AntiProton Annihilations at Darmstadt) straw tube tracker, Eur. Phys. J. A 49, 25 (2013)

    ADS  Article  Google Scholar 

  462. 462.

    M. Ablikim, et al., Design and construction of the BESIII detector, Nuclear Instruments and Methods in Physics Research Section A 614(3), 345 (2010)

    ADS  Article  Google Scholar 

  463. 463.

    Y. Van Haarlem, et al., The GlueX central drift chamber: design and performance, Nucl. Instrum. Meth. A 622, 142 (2010)

    ADS  Article  Google Scholar 

  464. 464.

    J. Smyrski. Overview of the panda experiment, Physics Procedia 37, 85 (2012), Proceedings of the 2nd International Conference on Technology and Instrumentation in Particle Physics (TIPP 2011)

    ADS  Article  Google Scholar 

  465. 465.

    L. Barion, et al., RICH detectors development for hadron identification at EIC: design, prototyping and reconstruction algorithm, JINST 15(02), C02040 (2020)

    Article  Google Scholar 

  466. 466.

    I. Adam, et al., The dirc particle identification system for the BaBar experiment, Nuclear Instruments and Methods in Physics Research Section A 538(1), 281 (2005)

    ADS  Article  Google Scholar 

  467. 467.

    A. Ali, F. Barbosa, J. Bessuille, E. Chudakov, R. Dzhygadlo, C. Fanelli, J. Frye, J. Hardin, A. Hurley, G. Kalicy, J. Kelsey, W. Li, M. Patsyuk, C. Schwarz, J. Schwiening, M. Shepherd, J. R. Stevens, T. Whitlatch, M. Williams, and Y. Yang, The Gluex DIRC program, Journal of Instrumentation 15(04), C04054 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

In 2018, we started the process of writing an EicC White Paper in order to, on one hand, unite the Chinese QCD and hadron physics community and, on the other hand, to establish an electron-ion collider whose somewhat lower center-of-mass energy serves to complement the US EIC physics program. It would not have been possible for us to complete this document within two-and-a-half years without generous assistance from many colleagues all over the world. We are grateful for support from the Institute of Modern Physics; and sincerely thank S. J. Brodsky, J.-P. Chen, A. Deshpande, H. Y. Gao, S. Goloskokov, T. Horn, X. D. Ji, S. Joosten, V. Kubarovsky, Z. E. Meziani, J. W. Qiu, E. Sichtermann, F. Yuan, Y. S. Yuan, J. X. Zhang, X. B. Zhao, Z. W. Zhao, and F. Zimmermann for helpful discussions and valuable advice. We would also like to thank the referees from Frontiers of Physics journal for their critical reading of the early version of the document and constructive suggestions. During the studies necessary for the preparation of this document, we were granted access to an array of software packages written by others, including DJANGOH, DSSV14, eSTARlight, LAGER, LHAPDF, MILOU, NNPDF, PARTONS, and Pythia.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yuxiang Zhao.

Additional information

arXiv: 2102.09222. This article can also be found at http://journal.hep.com.cn/fop/EN/10.1007/s11467-021-1062-0.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Anderle, D.P., Bertone, V., Cao, X. et al. Electron-ion collider in China. Front. Phys. 16, 64701 (2021). https://doi.org/10.1007/s11467-021-1062-0

Download citation

Keywords

  • electron ion collider
  • nucleon structure
  • nucleon mass
  • exotic hadronic states
  • quantum chromodynamics
  • 3D-tomography
  • helicity
  • transverse momentum dependent parton distribution
  • generalized parton distribution
  • energy recovery linac
  • polarization
  • spin rotator