Skip to main content
Log in

Selected Science Opportunities for the EicC

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

An electron ion collider has been proposed in China (EicC). It is anticipated that the facility would provide polarised electrons, protons and ion beams, in collisions with large centre-of-mass energy. This discussion highlights its potential to address issues that are central to understanding the emergence of mass within the Standard Model, using examples that range from the exploration of light-meson structure, through measurements of near-threshold heavy-quarkonia production, and on to studies of the spectrum of exotic hadrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. E. Rutherford, Collision of alpha particles with light atoms. I hydrogen. Philos. Mag. 37, 537–561 (1919)

    Google Scholar 

  2. E. Rutherford, Collision of alpha particles with light atoms II. velocity of the hydrogen atoms. Philos. Mag. 37, 562–571 (1919)

    Google Scholar 

  3. E. Rutherford, Collision of alpha particles with light atoms III. nitrogen and oxygen atoms. Philos. Mag. 37, 571–580 (1919)

    Google Scholar 

  4. E. Rutherford, Collision of alpha particles with light atoms IV. an anomalous effect in nitrogen. Philos. Mag. 37, 581–587 (1919)

    Google Scholar 

  5. H.D. Politzer, The dilemma of attribution. Proc. Nat. Acad. Sci. 102, 7789–7793 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  6. G. Aad et al., Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716, 1–29 (2012)

    ADS  Google Scholar 

  7. S. Chatrchyan et al., Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 716, 30–61 (2012)

    ADS  Google Scholar 

  8. F. Englert, Nobel lecture: the BEH mechanism and its scalar boson. Rev. Mod. Phys. 86, 843 (2014)

    ADS  MATH  Google Scholar 

  9. P.W. Higgs, Nobel lecture: evading the goldstone theorem. Rev. Mod. Phys. 86, 851 (2014)

    ADS  Google Scholar 

  10. P.A. Zyla, et al., Review of particle physics. Prog. Theor. Exp. Phys., 2020, 083C01 (2020)

  11. Y. Nambu, Quasiparticles and Gauge invariance in the theory of superconductivity. Phys. Rev. 117, 648–663 (1960)

    ADS  MathSciNet  Google Scholar 

  12. J. Goldstone, Field theories with superconductor solutions. Nuovo Cim. 19, 154–164 (1961)

    ADS  MathSciNet  MATH  Google Scholar 

  13. F. Wilczek, Asymptotic freedom: from paradox to paradigm. Proc. Nat. Acad. Sci. 102, 8403–8413 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  14. D.J. Gross, The discovery of asymptotic freedom and the emergence of QCD. Proc. Nat. Acad. Sci. 102, 9099–9108 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  15. K.G. Wilson, Confinement of quarks. Phys. Rev. D 10, 2445–2459 (1974)

    ADS  Google Scholar 

  16. A.M. Jaffe, The Millennium Grand Challenge in Mathematics. Not. Am. Math. Soc. 53, 652–660 (2006)

    MathSciNet  MATH  Google Scholar 

  17. C.D. Roberts, Perspective on the origin of hadron masses. Few Body Syst. 58, 5 (2017)

    ADS  Google Scholar 

  18. M. Ye, C. Yuan, 30 Years of BES Physics (World Scientific, Singapore, 2020)

    Google Scholar 

  19. J. Dudek et al., Physics opportunities with the 12 GeV upgrade at Jefferson lab. Eur. Phys. J. A 48, 187 (2012)

    ADS  Google Scholar 

  20. V.D. Burkert, Jefferson lab at 12 GeV: the science programme. Ann. Rev. Nucl. Part. Sci. 68, 405–428 (2018)

    ADS  Google Scholar 

  21. S.J. Brodsky, et al., Strong QCD from Hadron structure experiments (2020). arXiv:2006.06802 [hep-ph]

  22. D.S. Carman, K. Joo, V.I. Mokeev, Few body System, (in press), Strong QCD insights from excited nucleon structure studies with CLAS and CLAS12 (2020). arXiv:2006.15566 [nucl-ex]

  23. R. Aaij et al., Observation of \(J/\psi p\) resonances consistent with pentaquark states in \(\Lambda _b^0 \rightarrow J/\psi K^- p\) decays. Phys. Rev. Lett. 115, 072001 (2015)

    ADS  Google Scholar 

  24. O. Denisov, et al., Letter of intent (Draft 2.0): a new QCD facility at the M2 beam line of the CERN SPS . arXiv:1808.00848 [hep-ex]

  25. T. Feder, Brookhaven facility to be transformed into electron-ion collider. Phys. Today 73, 22 (2020)

    Google Scholar 

  26. X. Chen, A plan for electron ion collider in China. PoS DIS2018, 170 (2018)

    Google Scholar 

  27. X. Cao et al., Electron ion collider in China (EicC). Nucl. Tech. 43, 020001 (2020)

    Google Scholar 

  28. X. Cao, et al., Electron ion collider in China (EicC). Front. Phys. (2021) (in press)

  29. W.J. Marciano, H. Pagels, Quantum chromodynamics: a review. Phys. Rep. 36, 137 (1978)

    ADS  Google Scholar 

  30. J.M. Cornwall, Dynamical mass generation in continuum QCD. Phys. Rev. D 26, 1453 (1982)

    ADS  Google Scholar 

  31. D. Binosi, J. Papavassiliou, Pinch technique: theory and applications. Phys. Rep. 479, 1–152 (2009)

    ADS  MathSciNet  Google Scholar 

  32. C.D. Roberts, Three lectures on hadron physics. J. Phys. Conf. Ser. 706, 022003 (2016)

    Google Scholar 

  33. A.C. Aguilar, D. Binosi, J. Papavassiliou, The gluon mass generation mechanism: a concise primer. Front. Phys. China 11, 111203 (2016)

    ADS  Google Scholar 

  34. A. Deur, S.J. Brodsky, G.F. de Teramond, The QCD running coupling. Prog. Part. Nucl. Phys. 90, 1–74 (2016)

    ADS  Google Scholar 

  35. C.S. Fischer, QCD at finite temperature and chemical potential from Dyson–Schwinger equations. Prog. Part. Nucl. Phys. 105, 1–60 (2019)

    ADS  Google Scholar 

  36. A. Aprahamian, et al., Reaching for the horizon: The 2015 long range plan for nuclear science (2015)

  37. D. Kharzeev, Quarkonium interactions in QCD. Proc. Int. Sch. Phys. Fermi 130, 105–131 (1996)

    Google Scholar 

  38. D. Kharzeev, H. Satz, A. Syamtomov, G. Zinovjev, J / psi photoproduction and the gluon structure of the nucleon. Eur. Phys. J. C 9, 459–462 (1999)

    ADS  Google Scholar 

  39. R. Wang, J. Evslin, X. Chen, The origin of proton mass from \(J/{\Psi }\) photo-production data. Eur. Phys. J. C 80, 507 (2020)

    ADS  Google Scholar 

  40. J. Tarrús Castellà, G. Krein, Effective field theory for the nucleon–quarkonium interaction. Phys. Rev. D 98, 014029 (2018)

    ADS  Google Scholar 

  41. Y.L. Dokshitzer, Calculation of the structure functions for deep inelastic scattering and e+ e\(-\) annihilation by perturbation theory in quantum chromodynamics. (in russian). Sov. Phys. JETP 46, 641–653 (1977)

    ADS  Google Scholar 

  42. V.N. Gribov, L.N. Lipatov, Deep inelastic electron scattering in perturbation theory. Phys. Lett. B 37, 78–80 (1971)

    ADS  Google Scholar 

  43. L.N. Lipatov, The parton model and perturbation theory. Sov. J. Nucl. Phys. 20, 94–102 (1975)

    Google Scholar 

  44. G. Altarelli, G. Parisi, Asymptotic freedom in parton language. Nucl. Phys. B 126, 298–318 (1977)

    ADS  Google Scholar 

  45. G. Altarelli, Partons in quantum chromodynamics. Phys. Rep. 81, 1–129 (1982)

    ADS  Google Scholar 

  46. J. Badier et al., Experimental determination of the \(\pi \)-meson structure functions by the Drell-Yan mechanism. Z. Phys. C 18, 281 (1983)

    ADS  Google Scholar 

  47. J.S. Conway et al., Experimental study of muon pairs produced by 252-GeV pions on tungsten. Phys. Rev. D 39, 92–122 (1989)

    ADS  Google Scholar 

  48. S. Chekanov et al., Leading neutron production in e+ p collisions at HERA. Nucl. Phys. B 637, 3–56 (2002)

    ADS  Google Scholar 

  49. F. Aaron et al., Measurement of leading neutron production in deep-inelastic scattering at HERA. Eur. Phys. J. C 68, 381–399 (2010)

    ADS  Google Scholar 

  50. M. Aicher, A. Schäfer, W. Vogelsang, Soft-gluon resummation and the valence Parton distribution function of the pion. Phys. Rev. Lett. 105, 252003 (2010)

    ADS  Google Scholar 

  51. P.C. Barry, N. Sato, W. Melnitchouk, C.-R. Ji, First Monte Carlo global QCD analysis of Pion Parton distributions. Phys. Rev. Lett. 121, 152001 (2018)

    ADS  Google Scholar 

  52. Z.-F. Cui, J.-L. Zhang, D. Binosi, F. de Soto, C. Mezrag, J. Papavassiliou, C.D. Roberts, J. Rodríguez-Quintero, J. Segovia, S. Zafeiropoulos, Effective charge from lattice QCD. Chin. Phys. C 44, 083102 (2020)

    ADS  Google Scholar 

  53. J.C. Taylor, Ward identities and charge renormalization of the Yang–Mills field. Nucl. Phys. B 33, 436–444 (1971)

    ADS  MathSciNet  Google Scholar 

  54. A.A. Slavnov, Ward identities in Gauge theories. Theor. Math. Phys. 10, 99–107 (1972). [Teor. Mat. Fiz. 10 (19720 153]

    Google Scholar 

  55. C. Becchi, A. Rouet, R. Stora, Renormalization of Gauge theories. Ann. Phys. 98, 287–321 (1976)

    ADS  MathSciNet  Google Scholar 

  56. I.V. Tyutin, Gauge invariance in field theory and statistical physics in operator formalism. Gauge invariance in field theory and statistical physics in operator formalism, (1975). arXiv:0812.0580 [hep-th]

  57. Y.L. Dokshitzer, Perturbative QCD theory (includes our knowledge of \(\alpha (s)\)) - hep-ph/9812252. High-energy physics. In: Proceedings, 29th International Conference, ICHEP’98, Vancouver, Canada, July 23–29, 1998. vol 1, 2, pp 305–324 (1998)

  58. G. Grunberg, Renormalization scheme independent QCD and QED: the method of effective charges. Phys. Rev. D 29, 2315 (1984)

    ADS  Google Scholar 

  59. M. Gell-Mann, F.E. Low, Quantum electrodynamics at small distances. Phys. Rev. 95, 1300–1312 (1954)

    ADS  MathSciNet  MATH  Google Scholar 

  60. J.M. Cornwall, J. Papavassiliou, Gauge invariant three gluon vertex in QCD. Phys. Rev. D 40, 3474 (1989)

    ADS  Google Scholar 

  61. A. Pilaftsis, Generalized pinch technique and the background field method in general gauges. Nucl. Phys. B 487, 467–491 (1997)

    ADS  Google Scholar 

  62. L.F. Abbott, The background field method beyond one loop. Nucl. Phys. B 185, 189 (1981)

    ADS  Google Scholar 

  63. D. Binosi, C. Mezrag, J. Papavassiliou, C.D. Roberts, J. Rodríguez-Quintero, Process-independent strong running coupling. Phys. Rev. D 96, 054026 (2017)

    ADS  Google Scholar 

  64. J. Rodríguez-Quintero, D. Binosi, C. Mezrag, J. Papavassiliou, C.D. Roberts, Process-independent effective coupling. from QCD Green’s functions to phenomenology. Few Body Syst. 59, 121 (2018)

    ADS  Google Scholar 

  65. J.D. Bjorken, Applications of the chiral U(6) x (6) algebra of current densities. Phys. Rev. 148, 1467–1478 (1966)

    ADS  Google Scholar 

  66. J.D. Bjorken, Inelastic scattering of polarized leptons from polarized nucleons. Phys. Rev. D 1, 1376–1379 (1970)

    ADS  Google Scholar 

  67. J. Bjorken, E.A. Paschos, Inelastic electron proton and gamma proton scattering, and the structure of the nucleon. Phys. Rev. 185, 1975–1982 (1969)

    ADS  Google Scholar 

  68. A. Deur, V. Burkert, J.-P. Chen, W. Korsch, Experimental determination of the effective strong coupling constant. Phys. Lett. B 650, 244–248 (2007)

    ADS  Google Scholar 

  69. A. Deur, V. Burkert, J.-P. Chen, W. Korsch, Determination of the effective strong coupling constant \(\alpha _{g_1}(s)\) from CLAS spin structure function data. Phys. Lett. B 665, 349–351 (2008)

    ADS  Google Scholar 

  70. Z.-F. Cui, M. Ding, F. Gao, K. Raya, D. Binosi, L. Chang, C.D. Roberts, J. Rodríguez-Quintero, S.M. Schmidt, Kaon parton distributions: revealing Higgs modulation of emergent mass (2020). arXiv:2006.14075 [hep-ph]

  71. Z.-F. Cui, et al., Kaon and pion parton distributions—in progress (2020)

  72. Y. Nambu, From BCS to NJL: an old story retold. AIP Conf. Proc. 1388, 86–92 (2011)

    ADS  Google Scholar 

  73. D. Binosi, L. Chang, J. Papavassiliou, S.-X. Qin, C.D. Roberts, Natural constraints on the gluon-quark vertex. Phys. Rev. D 95, 031501(R) (2017)

    ADS  Google Scholar 

  74. S.J. Brodsky, R. Shrock, Condensates in quantum chromodynamics and the cosmological constant. Proc. Nat. Acad. Sci. 108, 45–50 (2011)

    ADS  Google Scholar 

  75. L. Chang, C.D. Roberts, P.C. Tandy, Expanding the concept of in-hadron condensates. Phys. Rev. C 85, 012201(R) (2012)

    ADS  Google Scholar 

  76. S.J. Brodsky, C.D. Roberts, R. Shrock, P.C. Tandy, Confinement contains condensates. Phys. Rev. C 85, 065202 (2012)

    ADS  Google Scholar 

  77. P. Maris, C.D. Roberts, P.C. Tandy, Pion mass and decay constant. Phys. Lett. B 420, 267–273 (1998)

    ADS  Google Scholar 

  78. H.J. Munczek, Dynamical chiral symmetry breaking, Goldstone’s theorem and the consistency of the Schwinger–Dyson and Bethe–Salpeter equations. Phys. Rev. D 52, 4736–4740 (1995)

    ADS  Google Scholar 

  79. A. Bender, C.D. Roberts, L. von Smekal, Goldstone theorem and diquark confinement beyond rainbow—Ladder approximation. Phys. Lett. B 380, 7–12 (1996)

    ADS  Google Scholar 

  80. S.-X. Qin, C.D. Roberts, S.M. Schmidt, Ward–Green–Takahashi identities and the axial-vector vertex. Phys. Lett. B 733, 202–208 (2014)

    ADS  MATH  Google Scholar 

  81. M. Ding, F. Gao, L. Chang, Y.-X. Liu, C.D. Roberts, Leading-twist parton distribution amplitudes of S-wave heavy-quarkonia. Phys. Lett. B 753, 330–335 (2016)

    ADS  Google Scholar 

  82. F. Gao, L. Chang, Y.-X. Liu, C.D. Roberts, P.C. Tandy, Exposing strangeness: projections for kaon electromagnetic form factors. Phys. Rev. D 96, 034024 (2017)

    ADS  Google Scholar 

  83. M. Ding et al., \(\gamma ^\ast \gamma \rightarrow \eta, \eta ^\prime \) transition form factors. Phys. Rev. D 99, 014014 (2019)

    ADS  Google Scholar 

  84. C.D. Roberts, S.M. Schmidt, reflections upon the emergence of hadronic Mass (2020). arXiv:2006.08782 [hep-ph]

  85. S. Okubo, Note on unitary symmetry in strong interactions. Prog. Theor. Phys. 27, 949–966 (1962)

    ADS  MATH  Google Scholar 

  86. M. Gell-Mann, Symmetries of baryons and mesons. Phys. Rev. 125, 1067–1084 (1962). see also “The Eightfold Way: A Theory of Strong Interaction Symmetry,” DOE Technical Report TID-12608, 1961

    ADS  MathSciNet  MATH  Google Scholar 

  87. S.-X. Qin, C.D. Roberts, S.M. Schmidt, Poincaré-covariant analysis of heavy-quark baryons. Phys. Rev. D 97, 114017 (2018)

    ADS  Google Scholar 

  88. S.-X. Qin, C.D. Roberts, S.M. Schmidt, Spectrum of light- and heavy-baryons. Few Body Syst. 60, 26 (2019)

    ADS  Google Scholar 

  89. C. Lorcé, On the hadron mass decomposition. Eur. Phys. J. C 78, 120 (2018)

    ADS  Google Scholar 

  90. A.C. Aguilar et al., Pion and Kaon structure at the electron–ion collider. Eur. Phys. J. A 55, 190 (2019)

    ADS  Google Scholar 

  91. G.P. Lepage, S.J. Brodsky, Exclusive processes in quantum chromodynamics: evolution equations for hadronic wave functions and the form-factors of mesons. Phys. Lett. B 87, 359–365 (1979)

    ADS  Google Scholar 

  92. A.V. Efremov, A.V. Radyushkin, Factorization and asymptotical behavior of pion form-factor in QCD. Phys. Lett. B 94, 245–250 (1980)

    ADS  Google Scholar 

  93. G.P. Lepage, S.J. Brodsky, Exclusive processes in perturbative quantum chromodynamics. Phys. Rev. D 22, 2157–2198 (1980)

    ADS  Google Scholar 

  94. J. Volmer et al., Measurement of the charged pion electromagnetic form-factor. Phys. Rev. Lett. 86, 1713–1716 (2001)

    ADS  Google Scholar 

  95. T. Horn et al., Determination of the charged pion form factor at \(Q^2=1.60\) and \(2.45 \,({\rm GeV/c})^2\). Phys. Rev. Lett. 97, 192001 (2006)

    ADS  Google Scholar 

  96. V. Tadevosyan et al., Determination of the pion charge form factor for \(Q^2=0.60- 1.60\,{\rm GeV}^2\). Phys. Rev. C 75, 055205 (2007)

    ADS  Google Scholar 

  97. T. Horn et al., Scaling study of the pion electroproduction cross sections and the pion form factor. Phys. Rev. C 78, 058201 (2008)

    ADS  Google Scholar 

  98. G. Huber et al., Charged pion form-factor between \(Q^2 = 0.60\,\text{ GeV}^2\) and \(2.45\,\text{ GeV}^2\). II. Determination of, and results for, the pion form-factor. Phys. Rev. C 78, 045203 (2008)

    ADS  Google Scholar 

  99. H.P. Blok et al., Charged pion form factor between \(Q^2\)=0.60 and 2.45 GeV\(^2\). I. Measurements of the cross section for the \({^1}\)H(\(e, e^{\prime }\pi ^+\))\(n\) reaction. Phys. Rev. C. 78, 045202 (2008)

    ADS  Google Scholar 

  100. P. Maris, P.C. Tandy, The \(\pi \), \(K^+\), and \(K^0\) electromagnetic form factors. Phys. Rev. C 62, 055204 (2000)

    ADS  Google Scholar 

  101. G.M Huber, D. Gaskell, et al., Measurement of the charged pion form factor to high \(Q^2\). Jefferson Lab Experiment E12-06-101 (2006)

  102. T. Horn, G.M. Huber, et al., Scaling study of the L/T-separated pion electroproduction cross section at 11 GeV, approved Jefferson Lab 12 GeV Experiment E12-07-105 (2007)

  103. L. Chang, I.C. Cloët, C.D. Roberts, S.M. Schmidt, P.C. Tandy, Pion electromagnetic form factor at spacelike momenta. Phys. Rev. Lett. 111, 141802 (2013)

    ADS  Google Scholar 

  104. M. Chen, M. Ding, L. Chang, C.D. Roberts, Mass-dependence of pseudoscalar meson elastic form factors. Phys. Rev. D 98, 091505(R) (2018)

    ADS  Google Scholar 

  105. L. Chang, I.C. Cloët, J.J. Cobos-Martinez, C.D. Roberts, S.M. Schmidt, P.C. Tandy, Imaging dynamical chiral symmetry breaking: pion wave function on the light front. Phys. Rev. Lett. 110, 132001 (2013)

    ADS  Google Scholar 

  106. C. Shi, L. Chang, C.D. Roberts, S.M. Schmidt, P.C. Tandy, H.-S. Zong, Flavour symmetry breaking in the kaon parton distribution amplitude. Phys. Lett. B 738, 512–518 (2014)

    ADS  Google Scholar 

  107. T. Horn, C.D. Roberts, The pion: an enigma within the standard model. J. Phys. G. 43, 073001 (2016)

    ADS  Google Scholar 

  108. G. Eichmann, H. Sanchis-Alepuz, R. Williams, R. Alkofer, C.S. Fischer, Baryons as relativistic three-quark bound states. Prog. Part. Nucl. Phys. 91, 1–100 (2016)

    ADS  Google Scholar 

  109. V.D. Burkert, C.D. Roberts, Colloquium : roper resonance: toward a solution to the fifty year puzzle. Rev. Mod. Phys. 91, 011003 (2019)

    ADS  MathSciNet  Google Scholar 

  110. G.D. Rochester, C.C. Butler, Evidence for the existence of new unstable elementary particles. Nature 160, 855–857 (1947)

    ADS  Google Scholar 

  111. T. Horn, G.M. Huber, P. Markowitz, et al., Studies of the L/T separated kaon electroproduction cross section from 5–11 GeV. Approved Jefferson lab 12 GeV experiment (2009)

  112. M.K. Jones et al., \(G_{E_p}/G_{M_p}\) ratio by polarization transfer in \(\overrightarrow{e} p \rightarrow e\overrightarrow{p}\). Phys. Rev. Lett. 84, 1398–1402 (2000)

    ADS  Google Scholar 

  113. O. Gayou et al., Measurement of G(E(p))/G(M(p)) in e(pol.) p \(\rightarrow \) e p(pol.) to \(Q^2 = 5.6\,\text{ GeV}^2\). Phys. Rev. Lett. 88, 092301 (2002)

    ADS  Google Scholar 

  114. V. Punjabi et al., Proton elastic form-factor ratios to \(Q^2 = 3.5\,\)GeV\(^2\) by polarization transfer. Phys. Rev. C 71, 055202 (2005)

    ADS  Google Scholar 

  115. A.J.R. Puckett et al., Recoil polarization measurements of the proton electromagnetic form factor ratio to \(Q^2 = 8.5\,\text{ GeV}^2\). Phys. Rev. Lett. 104, 242301 (2010)

    ADS  Google Scholar 

  116. A.J.R. Puckett et al., Final analysis of proton form factor ratio data at \({ Q}^{{ 2}} = 4.0\), 4.8 and \(5.6\,\text{ GeV}^{{ 2}}\). Phys. Rev. C 85, 045203 (2012)

    ADS  Google Scholar 

  117. A.J.R Puckett, et al, Polarization Transfer Observables in Elastic Electron Proton Scattering at \(Q^2 = \)2.5, 5.2, 6.8, and 8.5 GeV\(^2\). Phys. Rev. C, 96, 055203, [erratum: Phys. Rev. C 98, 019907 (2018)] (2017)

  118. G. Cates, C. de Jager, S. Riordan, B. Wojtsekhowski, Flavor decomposition of the elastic nucleon electromagnetic form factors. Phys. Rev. Lett. 106, 252003 (2011)

    ADS  Google Scholar 

  119. B. Wojtsekhowski, Flavor decomposition of nucleon form factors (arXiv:2001.02190 [nucl-ex]

  120. G. Gilfoyle, Future measurements of the nucleon elastic electromagnetic form factors at Jefferson Lab. EPJ Web Conf. 172, 02004 (2018)

    Google Scholar 

  121. B. Wojtsekhowski, et al., Large acceptance proton form factor ratio measurements at 13 and 15 (\({\rm GeV/c}^2\) using recoil polarization method, approved Jefferson lab 12 GeV experiment: E12-07-109 (2019)

  122. S. Gilad, et al., Precision measurement of the proton elastic cross section at high \(q^2\), Approved Jefferson lab 12 GeV experiment: E12-07-108 (2007)

  123. B. Wojtsekhowski, et al., Measurement of the neutron electromagnetic form factor ratio Gen/GMn at high \(Q^2\), approved Jefferson lab 12 GeV experiment: E12-09-016 (2010)

  124. B. Wojtsekhowski, et al., Precision Measurement of the Neutron Magnetic Form Factor up to \(Q^2=13.5\,({\rm GeV/c})^2\) by the Ratio Method, Approved Jefferson Lab 12 GeV Experiment: E12-09-019 (2010)

  125. Z.-F. Cui, C. Chen, D. Binosi, F. de Soto, C.D. Roberts, J. Rodríguez-Quintero, S.M. Schmidt, J. Segovia, in press) Nucleon elastic form factors at accessible large spacelike momenta (Phys. Rev. D, Nucleon elastic form factors at accessible large spacelike momenta -, 2020). arXiv:2003.11655 [hep-ph]

  126. Barabanov, M. Yu, et al., Diquark correlations in hadron physics: origin, impact and evidence arXiv:2008.07630 [hep-ph] (2020)

  127. M.B. Hecht, C.D. Roberts, S.M. Schmidt, Valence-quark distributions in the pion. Phys. Rev. C 63, 025213 (2001)

    ADS  Google Scholar 

  128. R.S. Sufian et al., Pion valence quark distribution from matrix element calculated in lattice QCD. Phys. Rev. D 99, 074507 (2019)

    ADS  Google Scholar 

  129. R.K. Ellis, W.J. Stirling, B.R. Webber, QCD and collider physics (Cambridge University Press, Cambridge, 2011)

    Google Scholar 

  130. Z.F. Ezawa, Wide-angle scattering in softened field theory. Nuovo Cim. A 23, 271–290 (1974)

    ADS  Google Scholar 

  131. G.R. Farrar, D.R. Jackson, Pion and nucleon structure functions near x=1. Phys. Rev. Lett. 35, 1416 (1975)

    ADS  Google Scholar 

  132. E.L. Berger, S.J. Brodsky, Quark structure functions of mesons and the Drell–Yan process. Phys. Rev. Lett. 42, 940–944 (1979)

    ADS  Google Scholar 

  133. R.J. Holt, C.D. Roberts, Distribution functions of the nucleon and pion in the Valence region. Rev. Mod. Phys. 82, 2991–3044 (2010)

    ADS  Google Scholar 

  134. S.-S. Xu, L. Chang, C.D. Roberts, H.-S. Zong, Pion and kaon valence-quark parton quasidistributions. Phys. Rev. D 97, 094014 (2018)

    ADS  Google Scholar 

  135. J.-H. Zhang et al., First direct lattice-QCD calculation of the \(x\)-dependence of the pion parton distribution function. Phys. Rev. D 100, 034505 (2019)

    ADS  Google Scholar 

  136. N. Karthik, et al., Renormalized quasi parton distribution function of pion. PoS, LATTICE2018, 109 (2018)

  137. M. Ding et al., Drawing insights from pion parton distributions. Chin. Phys. Lett. 44, 031002 (2020)

    Google Scholar 

  138. M. Ding et al., Symmetry, symmetry breaking, and pion parton distributions. Phys. Rev. D 101, 054014 (2020)

    ADS  Google Scholar 

  139. D. Adikaram, et al., Measurement of tagged deep inelastic scattering (TDIS), approved Jefferson lab experiment E12-15-006 (2015)

  140. J. Annand, et al., Measurement of kaon structure function through tagged deep inelastic scattering (TDIS), approved Jefferson lab experiment C12-15-006A (2017)

  141. D. Westmark, J.F. Owens, Enhanced threshold resummation formalism for lepton pair production and its effects in the determination of parton distribution functions. Phys. Rev. D 95, 056024 (2017)

    ADS  Google Scholar 

  142. I. Novikov, et al., (2020) Parton distribution functions of the charged pion within the xFitter framework. Parton distribution functions of the charged pion within the xFitter framework. arXiv:2002.02902 [hep-ph]

  143. M. Glück, E. Reya, I. Schienbein, Pionic parton distributions revisited. Eur. Phys. J. C 10, 313–317 (1999)

    ADS  Google Scholar 

  144. P.J. Sutton, A.D. Martin, R.G. Roberts, W.J. Stirling, Parton distributions for the pion extracted from Drell–Yan and prompt photon experiments. Phys. Rev. D 45, 2349–2359 (1992)

    ADS  Google Scholar 

  145. W.-C. Chang, J.-C. Peng, S. Platchkov, T. Sawada, Constraining gluon density of pions at large \(x\) by pion-induced \(J/\psi \) production. arXiv:2006.06947 [hep-ph] (2020)

  146. J.T. Londergan, G.Q. Liu, E.N. Rodionov, A.W. Thomas, Probing the pion sea with pi D Drell–Yan processes. Phys. Lett. B 361, 110–114 (1995)

    ADS  Google Scholar 

  147. J. Badier et al., Measurement of the \(K^- / \pi ^-\) structure function ratio using the Drell–Yan process. Phys. Lett. B 93, 354 (1980)

    ADS  Google Scholar 

  148. H.-W. Lin, J.-W. Chen, Z. Fan, J.-H. Zhang, R. Zhang, The valence-quark distribution of the kaon from lattice QCD – arXiv:2003.14128 [hep-lat] (2020)

  149. F. Martin, On the shape of Hadron structure functions. AIP Conf. Proc. 68, 797–800 (1981)

    ADS  Google Scholar 

  150. M. Gluck, E. Reya, M. Stratmann, Mesonic parton densities derived from constituent quark model constraints. Eur. Phys. J. C 2, 159–163 (1998)

    ADS  Google Scholar 

  151. R. Davidson, E. Ruiz Arriola, Parton distributions functions of pion, kaon and eta pseudoscalar mesons in the NJL model. Acta Phys. Polon. B 33, 1791–1808 (2002)

    ADS  Google Scholar 

  152. M. Alberg, J. Tibbals, Comparison of kaon and pion valence quark distributions in a statistical model. Phys. Lett. B 709, 370–373 (2012)

    ADS  Google Scholar 

  153. C. Chen, L. Chang, C.D. Roberts, S. Wan, H.-S. Zong, Valence-quark distribution functions in the kaon and pion. Phys. Rev. D 93, 074021 (2016)

    ADS  Google Scholar 

  154. J. Lan, C. Mondal, S. Jia, X. Zhao, J.P. Vary, Pion and kaon parton distribution functions from basis light front quantization and QCD evolution. Phys. Rev. D 101, 034024 (2020)

    ADS  Google Scholar 

  155. L.D. Landau, I. Pomeranchuk, Limits of applicability of the theory of bremsstrahlung electrons and pair production at high-energies. Dokl. Akad. Nauk Ser. Fiz. 92, 535–536 (1953)

    MATH  Google Scholar 

  156. A.B. Migdal, Bremsstrahlung and pair production in condensed media at high-energies. Phys. Rev. 103, 1811–1820 (1956)

    ADS  MATH  Google Scholar 

  157. G. G. Petratos, J. Gomez, R.J. Holt, R.D. Ransome, et al., MeAsurement of the \(F_2^n/F_2^p\), \(d/u\) RAtios and \(A=3\) EMC effect in deep inelastic electron scattering off the tritium and helium MirrOr Nuclei. – approved Jefferson lab experiment E12-010-103 (2010)

  158. E. Segarra, A. Schmidt, T. Kutz, D. Higinbotham, E. Piasetzky, M. Strikman, L. Weinstein, O. Hen, Neutron valence structure from nuclear deep inelastic scattering. Phys. Rev. Lett. 124, 092002 (2020)

    ADS  Google Scholar 

  159. G. G. Petratos, J. Gomez, R.J. Holt, R.D. Ransome, et al., https://www.jlab.org/indico/event/338/contribution/0/material/slides/0.pptx (2019)

  160. C.D. Roberts, R.J. Holt, S.M. Schmidt, Nucleon spin structure at very high \(x\). Phys. Lett. B 727, 249–254 (2013)

    ADS  Google Scholar 

  161. J. Sullivan, One pion exchange and deep inelastic electron—nucleon scattering. Phys. Rev. D 5, 1732–1737 (1972)

    ADS  Google Scholar 

  162. X.-D. Ji, A QCD analysis of the mass structure of the nucleon. Phys. Rev. Lett. 74, 1071–1074 (1995)

    ADS  Google Scholar 

  163. X.-D. Ji, Breakup of hadron masses and energy—momentum tensor of QCD. Phys. Rev. D 52, 271–281 (1995)

    ADS  Google Scholar 

  164. M.E. Peskin, Short distance analysis for heavy quark systems. 1. Diagrammatics. Nucl. Phys. B 156, 365–390 (1979)

    ADS  MathSciNet  Google Scholar 

  165. M. Hoferichter, J. Ruiz de Elvira, B. Kubis, U.-G. Meißner, High-precision determination of the pion-nucleon term from Roy–Steiner equations. Phys. Rev. Lett. 115, 092301 (2015)

    ADS  Google Scholar 

  166. M. Hoferichter, J. Ruiz de Elvira, B. Kubis, U.-G. Meißner, Remarks on the pion-nucleon -term. Phys. Lett. B 760, 74–78 (2016)

    ADS  Google Scholar 

  167. J. Ruiz de Elvira, M. Hoferichter, B. Kubis, U.-G. Meißner, Extracting the -term from low-energy pion-nucleon scattering. J. Phys. G 45, 024001 (2018)

    ADS  Google Scholar 

  168. A. Ali et al., First measurement of near-threshold \(J/\psi \) exclusive photoproduction off the proton. Phys. Rev. Lett. 123, 072001 (2019)

    ADS  Google Scholar 

  169. Y.-B. Yang, J. Liang, Y.-J. Bi, Y. Chen, T. Draper, K.-F. Liu, Z. Liu, Proton mass decomposition from the QCD energy momentum tensor. Phys. Rev. Lett. 121, 212001 (2018)

    ADS  Google Scholar 

  170. M.-L. Du, V. Baru, F.-K. Guo, C. Hanhart, U.-G. Meißner, A. Nefediev and I. Strakovsky, Deciphering the mechanism of near-threshold \(J/\psi \) photoproduction, arXiv:2009.08345 [hep-ph]

  171. V. Budnev, I. Ginzburg, G. Meledin, V. Serbo, The two photon particle production mechanism. physical problems applications. equivalent photon approximation. Phys. Rep. 15, 181–281 (1975)

    ADS  Google Scholar 

  172. J.-J. Wu, T.-S. Lee, B.-S. Zou, Nucleon resonances with hidden charm in \(\gamma \)p reactions. Phys. Rev. C 100, 035206 (2019)

    ADS  Google Scholar 

  173. Y.-Z. Xu et al., Elastic electromagnetic form factors of vector mesons. Phys. Rev. D 100, 114038 (2019)

    ADS  Google Scholar 

  174. R. Wang, X. Chen, Dynamical parton distributions from DGLAP equations with nonlinear corrections. Chin. Phys. C 41, 053103 (2017)

    ADS  Google Scholar 

  175. Y. Xu, Y. Xie, R. Wang, X. Chen, Estimation of \(\Upsilon \text{(1S) }\) production in ep process near threshold. Eur. Phys. J. C 80, 283 (2020)

    ADS  Google Scholar 

  176. O. Gryniuk, S. Joosten, Z.-E. Meziani, M. Vanderhaeghen, \(\Upsilon \) photo-production on the proton at the electron–ion collider (2020)

  177. S.-X. Qin, C. Chen, C. Mezrag, C.D. Roberts, Off-shell persistence of composite pions and kaons. Phys. Rev. C 97, 015203 (2018)

    ADS  Google Scholar 

  178. M. Guidal, J. Laget, M. Vanderhaeghen, Pseudoscalar meson photoproduction at high-energies: from the Regge regime to the hard scattering regime. Phys. Lett. B 400, 6–11 (1997)

    ADS  Google Scholar 

  179. M. Vanderhaeghen, M. Guidal, J. Laget, Regge description of charged pseudoscalar meson electroproduction above the resonance region. Phys. Rev. C 57, 1454–1457 (1998)

    ADS  Google Scholar 

  180. T.K. Choi, K.J. Kong, B.G. Yu, Pion and proton form factors in the Regge description of electroproduction \(p(e, e^{\prime }\pi ^+)n\). J. Korean Phys. Soc. 67, 1089–1094 (2015)

    ADS  Google Scholar 

  181. R.J. Perry, A. Kızılersu, A.W. Thomas, An improved hadronic model for pion electroproduction. Phys. Lett. B 807, 135581 (2020)

    Google Scholar 

  182. A. Actor, J. Korner, I. Bender, Pion electroproduction in a dual b5 model with fixed poles. Nuovo Cim. A 24, 369 (1974)

    ADS  Google Scholar 

  183. H. Holtmann, G. Levman, N.N. Nikolaev, A. Szczurek, J. Speth, How to measure the pion structure function at HERA. Phys. Lett. B 338, 363–368 (1994)

    ADS  Google Scholar 

  184. M. Bishari, Pion exchange and inclusive spectra. Phys. Lett. B 38, 510–514 (1972)

    ADS  Google Scholar 

  185. M. Vanderhaeghen, P.A. Guichon, M. Guidal, Hard electroproduction of photons and mesons on the nucleon. Phys. Rev. Lett. 80, 5064–5067 (1998)

    ADS  Google Scholar 

  186. S. Goloskokov, P. Kroll, The Role of the quark and gluon GPDs in hard vector-meson electroproduction. Eur. Phys. J. C 53, 367–384 (2008)

    ADS  Google Scholar 

  187. S. Goloskokov, P. Kroll, An attempt to understand exclusive \(\pi ^+\) electroproduction. Eur. Phys. J. C 65, 137–151 (2010)

    ADS  Google Scholar 

  188. S. Goloskokov, P. Kroll, Transversity in hard exclusive electroproduction of pseudoscalar mesons. Eur. Phys. J. A 47, 112 (2011)

    ADS  Google Scholar 

  189. L. Favart, M. Guidal, T. Horn, P. Kroll, Deeply virtual meson production on the nucleon. Eur. Phys. J. A 52, 158 (2016)

    ADS  Google Scholar 

  190. A. Kim et al., Target and double spin asymmetries of deeply virtual \(\pi ^0\) production with a longitudinally polarized proton target and CLAS. Phys. Lett. B 768, 168–173 (2017)

    ADS  Google Scholar 

  191. G. Goldstein, J.O. Gonzalez Hernandez, S. Liuti, Flexible parametrization of generalized Parton distributions: the chiral-odd sector. Phys. Rev. D 91, 114013 (2015)

    ADS  Google Scholar 

  192. I. Bedlinskiy et al., Measurement of exclusive \(\pi ^0\) electroproduction structure functions and their relationship to transversity GPDs. Phys. Rev. Lett. 109, 112001 (2012)

    ADS  Google Scholar 

  193. M. Defurne et al., Rosenbluth separation of the \(\pi ^0\) electroproduction cross section. Phys. Rev. Lett. 117, 262001 (2016)

    ADS  Google Scholar 

  194. M. Gell-Mann, A schematic model of Baryons and Mesons. Phys. Lett. 8, 214–215 (1964)

    ADS  Google Scholar 

  195. G. Zweig, An SU(3) model for strong interaction symmetry and its breaking. Version 2. Lichtenberg, D. and Rosen, S. P. (eds.), Developments in the quark theory of hadrons. vol. 1. 1964 - 1978, pp 22–101 (1964)

  196. S. Godfrey, N. Isgur, Mesons in a relativized Quark model with chromodynamics. Phys. Rev. D 32, 189–231 (1985)

    ADS  Google Scholar 

  197. S. Capstick, N. Isgur, Baryons in a relativized Quark model with chromodynamics. Phys. Rev. D 34, 2809 (1986)

    ADS  Google Scholar 

  198. K.D. Lane, Asymptotic freedom and Goldstone realization of chiral symmetry. Phys. Rev. D 10, 2605 (1974)

    ADS  Google Scholar 

  199. H. Politzer, Effective quark masses in the chiral limit. Nucl. Phys. B 117, 397–406 (1976)

    ADS  Google Scholar 

  200. A. Manohar, H. Georgi, Chiral quarks and the nonrelativistic quark model. Nucl. Phys. B 234, 189–212 (1984)

    ADS  Google Scholar 

  201. B. Aubert et al., Observation of a narrow meson decaying to \(D_s^+ \pi ^0\) at a mass of 2.32-GeV/c\(^2\). Phys. Rev. Lett. 90, 242001 (2003)

    ADS  Google Scholar 

  202. S. Choi et al., Observation of a narrow charmonium—like state in exclusive B+- K+- pi+ pi- J / psi decays. Phys. Rev. Lett. 91, 262001 (2003)

    ADS  Google Scholar 

  203. E. Eichten, K. Gottfried, T. Kinoshita, K. Lane, T.-M. Yan, Charmonium: the model. Phys. Rev. D 17, 3090 (1978). [Erratum: Phys.Rev.D 21, 313 (1980)]

    ADS  Google Scholar 

  204. E. Eichten, K. Gottfried, T. Kinoshita, K. Lane, T.-M. Yan, Charmonium: comparison with experiment. Phys. Rev. D 21, 203 (1980)

    ADS  Google Scholar 

  205. T. Barnes, S. Godfrey, E. Swanson, Higher charmonia. Phys. Rev. D 72, 054026 (2005)

    ADS  Google Scholar 

  206. R.L. Jaffe, Exotica. Phys. Rept. 409, 1–45 (2005)

    ADS  Google Scholar 

  207. E.S. Swanson, The new heavy mesons: a status report. Phys. Rept. 429, 243–305 (2006)

    ADS  Google Scholar 

  208. E. Klempt, A. Zaitsev, Glueballs, hybrids, multiquarks. experimental facts versus QCD inspired concepts. Phys. Rept. 454, 1–202 (2007)

    ADS  Google Scholar 

  209. E. Klempt, J.-M. Richard, Baryon spectroscopy. Rev. Mod. Phys. 82, 1095–1153 (2010)

    ADS  Google Scholar 

  210. N. Brambilla et al., Heavy quarkonium: progress, puzzles, and opportunities. Eur. Phys. J. C 71, 1534 (2011)

    ADS  Google Scholar 

  211. H.-X. Chen, W. Chen, X. Liu, S.-L. Zhu, The hidden-charm pentaquark and tetraquark states. Phys. Rept. 639, 1–121 (2016)

    ADS  MathSciNet  Google Scholar 

  212. A. Hosaka, T. Iijima, K. Miyabayashi, Y. Sakai, S. Yasui, Exotic hadrons with heavy flavors: X, Y, Z, and related states. PTEP 2016, 062C01 (2016)

    Google Scholar 

  213. J.-M. Richard, Exotic hadrons: review and perspectives. Few Body Syst. 57, 1185–1212 (2016)

    ADS  Google Scholar 

  214. H.-X. Chen, W. Chen, X. Liu, Y.-R. Liu, S.-L. Zhu, A review of the open charm and open bottom systems. Rept. Prog. Phys. 80, 076201 (2017)

    ADS  Google Scholar 

  215. R.F. Lebed, R.E. Mitchell, E.S. Swanson, Heavy-quark QCD exotica. Prog. Part. Nucl. Phys. 93, 143–194 (2017)

    ADS  Google Scholar 

  216. A. Esposito, A. Pilloni, A.D. Polosa, Multiquark resonances. Phys. Rep. 668, 1–97 (2016)

    ADS  MathSciNet  Google Scholar 

  217. Y. Dong, A. Faessler, V.E. Lyubovitskij, Description of heavy exotic resonances as molecular states using phenomenological Lagrangians. Prog. Part. Nucl. Phys. 94, 282–310 (2017)

    ADS  Google Scholar 

  218. F.-K. Guo, C. Hanhart, U.-G. Meißner, Q. Wang, Q. Zhao, B.-S. Zou, Hadronic molecules. Rev. Mod. Phys. 90, 015004 (2018)

    ADS  Google Scholar 

  219. A. Ali, J.S. Lange, S. Stone, Exotics: heavy pentaquarks and tetraquarks. Prog. Part. Nucl. Phys. 97, 123–198 (2017)

    ADS  Google Scholar 

  220. S.L. Olsen, T. Skwarnicki, D. Zieminska, Nonstandard heavy mesons and baryons: experimental evidence. Rev. Mod. Phys. 90, 015003 (2018)

    ADS  MathSciNet  Google Scholar 

  221. Y.S. Kalashnikova, A.V. Nefediev, X(3872) in the molecular model. Phys. Usp. 62, 568–595 (2019). [Usp. Fiz. Nauk189,no.6,603(2019)]

    ADS  Google Scholar 

  222. Y.-R. Liu, H.-X. Chen, W. Chen, X. Liu, S.-L. Zhu, Pentaquark and Tetraquark states. Prog. Part. Nucl. Phys. 107, 237–320 (2019)

    ADS  Google Scholar 

  223. N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C.-P. Shen, C.-E. Thomas, A. Vairo, C.-Z. Yuan, The \(XYZ\) states: experimental and theoretical status and perspectives (2019)

  224. Y. Yamaguchi, A. Hosaka, S. Takeuchi, M. Takizawa, Heavy hadronic molecules with pion exchange and quark core couplings: a guide for practitioners. J. Phys. G 47, 053001 (2020)

    ADS  Google Scholar 

  225. F.-K. Guo, X.-H. Liu, S. Sakai, Threshold cusps and triangle singularities in hadronic reactions. Prog. Part. Nucl. Phys. 112, 103757 (2020)

    Google Scholar 

  226. M. Ablikim et al., Future physics programme of BESIII. Chin. Phys. C 44, 040001 (2020)

    ADS  Google Scholar 

  227. C.-Z. Yuan, S.L. Olsen, The BESIII physics programme. Nature Rev. Phys. 1, 480–494 (2019)

    ADS  Google Scholar 

  228. W. Altmannshofer et al., The belle II physics book. PTEP 2019, 123C01. [Erratum: PTEP 2020, 029201 (2020)] (2019)

  229. A. Cerri, et al., Report from working group 4: opportunities in flavour physics at the HL-LHC and HE-LHC, vol  7, pp 867–1158 (2019)

  230. M. Lutz, et al., Physics Performance Report for PANDA: Strong Interaction Studies with Antiprotons (2009)

  231. R. Aaij et al., Observation of \(J/\psi \phi \) structures consistent with exotic states from amplitude analysis of \(B^+\rightarrow J/\psi \phi K^+\) decays. Phys. Rev. Lett. 118, 022003 (2017)

    ADS  Google Scholar 

  232. R. Aaij et al., Observation of a narrow pentaquark state, \(P_c(4312)^+\), and of two-peak structure of the \(P_c(4450)^+\). Phys. Rev. Lett. 122, 222001 (2019)

    ADS  Google Scholar 

  233. B. Aubert et al., Observation of a broad structure in the \(\pi ^+ \pi ^- J/\psi \) mass spectrum around 4.26-GeV/c\(^2\). Phys. Rev. Lett. 95, 142001 (2005)

    ADS  Google Scholar 

  234. M. Ablikim et al., Precise measurement of the \(e^+e^-\rightarrow \pi ^+\pi ^-J/\psi \) cross section at center-of-mass energies from 3.77 to 4.60 GeV. Phys. Rev. Lett. 118, 092001 (2017)

    ADS  Google Scholar 

  235. G. Gokhroo et al., Observation of a Near-threshold \(D^0 \bar{D}^0 \pi ^0\) Enhancement in \(B \rightarrow D^0 \bar{D}^0 \pi ^0 K\) Decay. Phys. Rev. Lett. 97, 162002 (2006)

    ADS  Google Scholar 

  236. B. Aubert et al., Study of resonances in exclusive \(B\) decays to \(\bar{D}^* D^* K\). Phys. Rev. D 77, 011102 (2008)

    ADS  Google Scholar 

  237. T. Aushev et al., Study of the \(B \rightarrow X(3872) (D^{*0} \bar{D}^0) K\) decay. Phys. Rev. D 81, 031103 (2010)

    ADS  Google Scholar 

  238. M. Ablikim et al., Observation of a charged \((D\bar{D}^{*})^\pm \) mass peak in \(e^{+}e^{-} \rightarrow \pi D\bar{D}^{*}\) at \(\sqrt{s} =\) 4.26 GeV. Phys. Rev. Lett. 112, 022001 (2014)

    ADS  Google Scholar 

  239. M. Ablikim et al., Confirmation of a charged charmoniumlike state \({Z_c(3885)}^{\mp }\) in \(e^+e^-\rightarrow \pi ^{\pm }{(D\bar{D}^*)}^{\mp } \) with double \(D\) tag. Phys. Rev. D 92, 092006 (2015)

    ADS  Google Scholar 

  240. Z.Q. Liu et al., Study of \(e^+e^- \rightarrow \pi ^+ \pi ^- J/\psi \) and observation of a charged charmoniumlike state at belle. Phys. Rev. Lett. 110, 252002 (2013)

    ADS  Google Scholar 

  241. M. Ablikim et al., Observation of a charged charmoniumlike structure \(Z_c\)(4020) and Search for the \(Z_c\)(3900) in \(e^+e^- \rightarrow \pi ^+\pi ^-h_c\). Phys. Rev. Lett. 111, 242001 (2013)

    ADS  Google Scholar 

  242. Q. Wang, C. Hanhart, Q. Zhao, Decoding the riddle of \(Y(4260)\) and \(Z_c(3900)\). Phys. Rev. Lett. 111, 132003 (2013)

    ADS  Google Scholar 

  243. Q. Wang, C. Hanhart, Q. Zhao, Systematic study of the singularity mechanism in heavy quarkonium decays. Phys. Lett. B 725, 106–110 (2013)

    ADS  Google Scholar 

  244. X.-H. Liu, Influence of threshold effects induced by charmed meson rescattering. Phys. Rev. D 90, 074004 (2014)

    ADS  Google Scholar 

  245. M. Albaladejo, F.-K. Guo, C. Hidalgo-Duque, J. Nieves, \(Z_c(3900)\): What has been really seen? Phys. Lett. B 755, 337–342 (2016)

    ADS  Google Scholar 

  246. A.P. Szczepaniak, Triangle singularities and \(XYZ\) quarkonium peaks. Phys. Lett. B 747, 410–416 (2015)

    ADS  Google Scholar 

  247. A. Pilloni, C. Fernandez-Ramirez, A. Jackura, V. Mathieu, M. Mikhasenko, J. Nys, A.P. Szczepaniak, Amplitude analysis and the nature of the \(Z_c\)(3900). Phys. Lett. B 772, 200–209 (2017)

    ADS  Google Scholar 

  248. Q.-R. Gong, J.-L. Pang, Y.-F. Wang, H.-Q. Zheng, The \(Z_c(3900)\) peak does not come from the “triangle singularity”. Eur. Phys. J. C 78, 276 (2018)

    Google Scholar 

  249. F.-K. Guo, Triangle Singularities and Charmonium-like \(XYZ\) States, 1 (2020)

  250. M. Aghasyan et al., Search for muoproduction of \(X (3872)\) at COMPASS and indication of a new state \(\tilde{X}(3872)\). Phys. Lett. B 783, 334–340 (2018)

    ADS  Google Scholar 

  251. J.-J. Wu, R. Molina, E. Oset, B.S. Zou, Prediction of narrow \(N^*\) and \(\Lambda ^*\) resonances with hidden charm above 4 GeV. Phys. Rev. Lett. 105, 232001 (2010)

    ADS  Google Scholar 

  252. W.L. Wang, F. Huang, Z.Y. Zhang, B.S. Zou, \(\Sigma _c \bar{D}\) and \(\Lambda _c \bar{D}\) states in a chiral quark model. Phys. Rev. C 84, 015203 (2011)

    ADS  Google Scholar 

  253. Z.-C. Yang, Z.-F. Sun, J. He, X. Liu, S.-L. Zhu, The possible hidden-charm molecular baryons composed of anti-charmed meson and charmed baryon. Chin. Phys. C 36, 6–13 (2012)

    ADS  Google Scholar 

  254. J.-J. Wu, T.S.H. Lee, B.S. Zou, Nucleon resonances with hidden charm in coupled-channel models. Phys. Rev. C 85, 044002 (2012)

    ADS  Google Scholar 

  255. C.W. Xiao, J. Nieves, E. Oset, Combining heavy quark spin and local hidden gauge symmetries in the dynamical generation of hidden charm baryons. Phys. Rev. D 88, 056012 (2013)

    ADS  Google Scholar 

  256. T. Uchino, W.-H. Liang, E. Oset, Baryon states with hidden charm in the extended local hidden gauge approach. Eur. Phys. J. A 52, 43 (2016)

    ADS  Google Scholar 

  257. M. Karliner, J.L. Rosner, New exotic meson and baryon resonances from doubly-heavy hadronic molecules. Phys. Rev. Lett. 115, 122001 (2015)

    ADS  Google Scholar 

  258. M.-L. Du, V. Baru, F.-K. Guo, C. Hanhart, U.-G. Meißner, J.A. Oller, Q. Wang, Interpretation of the LHCb \(P_c\) states as hadronic molecules and hints of a narrow \(P_c(4380)\). Phys. Rev. Lett. 124, 072001 (2020)

    ADS  Google Scholar 

  259. M.-Z. Liu, Y.-W. Pan, F.-Z. Peng, M. Sánchez Sánchez, L.-S. Geng, A. Hosaka, M. Pavon Valderrama, Emergence of a complete heavy-quark spin symmetry multiplet: seven molecular pentaquarks in light of the latest LHCb analysis. Phys. Rev. Lett. 122, 242001 (2019)

    ADS  Google Scholar 

  260. Z. Meziani, et al., A search for the LHCb charmed ’Pentaquark’ using photo-production of \(J/{\psi }\) at threshold in Hall C at Jefferson lab (2016)

  261. X. Cao, J.-P. Dai, Confronting pentaquark photoproduction with new LHCb observations. Phys. Rev. D 100, 054033 (2019)

    ADS  Google Scholar 

  262. Y.-H. Lin, C.-W. Shen, F.-K. Guo, B.-S. Zou, Decay behaviors of the \(P_c\) hadronic molecules. Phys. Rev. D 95, 114017 (2017)

    ADS  Google Scholar 

  263. Y.-H. Lin, B.-S. Zou, Strong decays of the latest LHCb pentaquark candidates in hadronic molecule pictures. Phys. Rev. D 100, 056005 (2019)

    ADS  Google Scholar 

  264. Y. Dong, P. Shen, F. Huang, Z. Zhang, Selected strong decays of pentaquark State \(P_c(4312)\) in a chiral constituent quark model. Eur. Phys. J. C 80, 341 (2020)

    ADS  Google Scholar 

  265. A. Piucci, Amplitude analysis of \(\Lambda _b^0 \rightarrow \Lambda _c^+ \bar{D}^0 K^-\) decays and pentaquark searches in the \(\Lambda _c^+ D^0\) system at the LHCb experiment.. Ph.D. thesis, Heidelberg U (2019)

  266. A. Bondar et al., Observation of two charged bottomonium-like resonances in \(\Upsilon (5S)\) decays. Phys. Rev. Lett. 108, 122001 (2012)

    ADS  Google Scholar 

  267. R. Mizuk et al., Observation of a new structure near 10.75 GeV in the energy dependence of the \(e^{+}e^{-}\rightarrow \Upsilon (nS)\pi ^{+}\pi ^{-}\) (n = 1, 2, 3) cross sections. JHEP 10, 220 (2019)

    ADS  Google Scholar 

  268. J.-J. Wu, B. Zou, Prediction of super-heavy \(N^*\) and \(\Lambda ^*\) resonances with hidden beauty. Phys. Lett. B 709, 70–76 (2012)

    ADS  Google Scholar 

  269. C. Xiao, E. Oset, Hidden beauty baryon states in the local hidden gauge approach with heavy quark spin symmetry. Eur. Phys. J. A 49, 139 (2013)

    ADS  Google Scholar 

  270. J. Wu, Y.-R. Liu, K. Chen, X. Liu, S.-L. Zhu, Hidden-charm pentaquarks and their hidden-bottom and \(B_c\)-like partner states. Phys. Rev. D 95, 034002 (2017)

    ADS  Google Scholar 

  271. K. Azizi, Y. Sarac, H. Sundu, Hidden bottom pentaquark states with spin 3/2 and 5/2. Phys. Rev. D 96, 094030 (2017)

    ADS  Google Scholar 

  272. C.-W. Shen, D. Rönchen, U.-G. Meißner, B.-S. Zou, Exploratory study of possible resonances in heavy meson—heavy baryon coupled-channel interactions. Chin. Phys. C 42, 023106 (2018)

    ADS  Google Scholar 

  273. Y. Yamaguchi, A. Giachino, A. Hosaka, E. Santopinto, S. Takeuchi, M. Takizawa, Hidden-charm and bottom meson-baryon molecules coupled with five-quark states. Phys. Rev. D 96, 114031 (2017)

    ADS  MATH  Google Scholar 

  274. Y.-H. Lin, C.-W. Shen, B.-S. Zou, Decay behavior of the strange and beauty partners of \(P_c\) hadronic molecules. Nucl. Phys. A 980, 21–31 (2018)

    ADS  Google Scholar 

  275. J. Ferretti, E. Santopinto, M. Naeem Anwar, M. Bedolla, The baryo-quarkonium picture for hidden-charm and bottom pentaquarks and LHCb \(P_{\rm c}(4380)\) and \(P_{\rm c}(4450)\) states. Phys. Lett. B 789, 562–567 (2019)

    ADS  Google Scholar 

  276. H. Huang, J. Ping, Investigating the hidden-charm and hidden-bottom pentaquark resonances in scattering process. Phys. Rev. D 99, 014010 (2019)

    ADS  Google Scholar 

  277. G. Yang, J. Ping, J. Segovia, Hidden-bottom pentaquarks. Phys. Rev. D 99, 014035 (2019)

    ADS  Google Scholar 

  278. T. Gutsche, V.E. Lyubovitskij, Structure and decays of hidden heavy pentaquarks. Phys. Rev. D 100, 094031 (2019)

    ADS  Google Scholar 

  279. F.-Z. Peng, M.-Z. Liu, Y.-W. Pan, M. Sánchez Sánchez, M . Pavon Valderrama, Five-flavor pentaquarks and other light- and heavy-flavor symmetry partners of the LHCb hidden-charm pentaquark (2019)

  280. B. Gittelman, K. Hanson, D. Larson, E. Loh, A. Silverman, G. Theodosiou, Photoproduction of the \(\psi (3100)\) Meson at 11 GeV. Phys. Rev. Lett. 35, 1616 (1975)

    ADS  Google Scholar 

  281. U. Camerini, J. Learned, R. Prepost, C.M. Spencer, D. Wiser, W. Ash, R.L. Anderson, D. Ritson, D. Sherden, C.K. Sinclair, Photoproduction of the \(\psi \) particles. Phys. Rev. Lett. 35, 483 (1975)

    ADS  Google Scholar 

  282. M.E. Binkley et al., \(J/\psi \) photoproduction from 60 GeV/c to 300 GeV/c. Phys. Rev. Lett. 48, 73 (1982)

    ADS  Google Scholar 

  283. B.H. Denby et al., Inelastic and elastic photoproduction of \(J/\psi (3097)\). Phys. Rev. Lett. 52, 795–798 (1984)

    ADS  Google Scholar 

  284. P. Frabetti et al., A Measurement of elastic \(J / \psi \) photoproduction cross-section at fermilab E687. Phys. Lett. B 316, 197–206 (1993)

    ADS  Google Scholar 

  285. C. Adloff et al., Elastic photoproduction of \(J / \psi \) and \(\Upsilon \) mesons at HERA. Phys. Lett. B 483, 23–35 (2000)

    Google Scholar 

  286. S. Chekanov et al., Exclusive photoproduction of \(J / \psi \) mesons at HERA. Eur. Phys. J. C 24, 345–360 (2002)

    Google Scholar 

  287. M. Atiya et al., Evidence for the high-energy photoproduction of charmed mesons. Phys. Rev. Lett. 43, 414–416 (1979)

    ADS  Google Scholar 

  288. A. Clark et al., Cross-section measurements for charm production by muons and photons. Phys. Rev. Lett. 45, 682–686 (1980)

    ADS  Google Scholar 

  289. J. Aubert et al., Production of charmed particles in 250 GeV \(\mu ^+\)-iron interactions. Nucl. Phys. B 213, 31–64 (1983)

    ADS  Google Scholar 

  290. M. Adamovich et al., Cross-sections and some features of charm photoproduction at \(\gamma \) energies of 20 GeV to 70 GeV. Phys. Lett. B 187, 437–441 (1987)

    ADS  Google Scholar 

  291. M. Derrick et al., Study of \(D^{*\pm } (2010)\) production in \(e p\) collisions at HERA. Phys. Lett. B 349, 225–237 (1995)

    ADS  Google Scholar 

  292. J. Breitweg et al., Measurement of elastic \(\Upsilon \) photoproduction at HERA. Phys. Lett. B 437, 432–444 (1998)

    ADS  Google Scholar 

  293. S. Chekanov et al., Exclusive photoproduction of \(\Upsilon \) mesons at HERA. Phys. Lett. B 680, 4–12 (2009)

    Google Scholar 

  294. A. M. Sirunyan et al., Measurement of exclusive \(\Upsilon \) photoproduction from protons in pPb collisions at \(\sqrt{s_{NN}} =\) 5.02 TeV, Eur. Phys. J. C 79, 277 (2019)

  295. R. Aaij et al., Measurement of the exclusive \(\Upsilon \) production cross-section in pp collisions at \( \sqrt{s}=7 \) TeV and 8 TeV. JHEP 09, 084 (2015)

    ADS  Google Scholar 

  296. J. Aubert et al., Observation of wrong sign Trimuon Events in 250-GeV Muon—nucleon interactions. Phys. Lett. B 106, 419–422 (1981)

    ADS  Google Scholar 

  297. C. Adloff et al., Measurement of open beauty production at HERA. Phys. Lett. B 467, 156–164 (1999). [Erratum: Phys.Lett.B 518, 331–332 (2001)]

    ADS  Google Scholar 

  298. O. Gryniuk, M. Vanderhaeghen, Accessing the real part of the forward \(J/\psi \)-\(p\) scattering amplitude from \(J/\psi \) photoproduction on protons around threshold. Phys. Rev. D 94, 074001 (2016)

    ADS  Google Scholar 

  299. S. Brodsky, E. Chudakov, P. Hoyer, J. Laget, Photoproduction of charm near threshold. Phys. Lett. B 498, 23–28 (2001)

    ADS  Google Scholar 

  300. E. Martynov, E. Predazzi, A. Prokudin, A universal regge pole model for all vector meson exclusive photoproduction by real and virtual photons. Eur. Phys. J. C 26, 271–284 (2002)

    ADS  Google Scholar 

  301. E. Martynov, E. Predazzi, A. Prokudin, Photoproduction of vector mesons in the soft dipole pomeron model. Phys. Rev. D 67, 074023 (2003)

    ADS  Google Scholar 

  302. X.-H. Liu, Q. Zhao, F.E. Close, Search for tetraquark candidate \(Z(4430)\) in meson photoproduction. Phys. Rev. D 77, 094005 (2008)

    ADS  Google Scholar 

  303. G. Galata, Photoproduction of \(Z(4430)\) through mesonic Regge trajectories exchange. Phys. Rev. C 83, 065203 (2011)

    ADS  Google Scholar 

  304. Q.-Y. Lin, X. Liu, H.-S. Xu, Charged charmoniumlike state \(Z_c(3900)^\pm \) via meson photoproduction. Phys. Rev. D 88, 114009 (2013)

    ADS  Google Scholar 

  305. Q.-Y. Lin, X. Liu, H.-S. Xu, Probing charmoniumlike state \(X(3915)\) through meson photoproduction. Phys. Rev. D 89, 034016 (2014)

    ADS  Google Scholar 

  306. Y. Huang, J. He, H.-F. Zhang, X.-R. Chen, Discovery potential of hidden charm baryon resonances via photoproduction. J. Phys. G 41, 115004 (2014)

    ADS  Google Scholar 

  307. C. Adolph et al., Search for exclusive photoproduction of \(Z_c^{\pm }\)(3900) at COMPASS. Phys. Lett. B 742, 330–334 (2015)

    ADS  Google Scholar 

  308. Q. Wang, X.-H. Liu, Q. Zhao, Photoproduction of hidden charm pentaquark states \(P_c^+(4380)\) and \(P_c^+(4450)\). Phys. Rev. D 92, 034022 (2015)

    ADS  Google Scholar 

  309. X.-Y. Wang, X.-R. Chen, A. Guskov, Photoproduction of the charged charmoniumlike \(Z_{c}^{+}(4200)\). Phys. Rev. D 92, 094017 (2015)

    ADS  Google Scholar 

  310. V. Kubarovsky, M. Voloshin, Formation of hidden-charm pentaquarks in photon-nucleon collisions. Phys. Rev. D 92, 031502 (2015)

    ADS  Google Scholar 

  311. M. Karliner, J.L. Rosner, Photoproduction of exotic baryon resonances. Phys. Lett. B 752, 329–332 (2016)

    ADS  Google Scholar 

  312. Y. Huang, J.-J. Xie, J. He, X. Chen, H.-F. Zhang, Photoproduction of hidden-charm states in the \(\gamma p \rightarrow \bar{D}^{*0} \Lambda ^+_c\) reaction near threshold. Chin. Phys. C 40, 124104 (2016)

    ADS  Google Scholar 

  313. A. Hiller Blin, C. Fernández-Ramírez, A. Jackura, V. Mathieu, V. Mokeev, A. Pilloni, A. Szczepaniak, Studying the \(P_c\)(4450) resonance in \(J/\psi \) photoproduction off protons. Phys. Rev. D 94, 034002 (2016)

    ADS  Google Scholar 

  314. S. Joosten, Z. Meziani, Heavy quarkonium production at threshold: from JLab to EIC. PoS, QCDEV2017, 017 (2018)

  315. E. Paryev, Y. Kiselev, The role of hidden-charm pentaquark resonance \(P^+_c\)(4450), in \(J/\psi \) photoproduction on nuclei near threshold. Nucl. Phys. A 978, 201–213 (2018)

    ADS  Google Scholar 

  316. X.-Y. Wang, X.-R. Chen, J. He, Possibility to study pentaquark states \(P_{c}(4312), P_{c}(4440)\), and \(P_{c}(4457)\) in \(\gamma p\rightarrow J/\psi p\) reaction. Phys. Rev. D 99, 114007 (2019)

    ADS  Google Scholar 

  317. V. Gonçalves, M. Jaime, Photoproduction of pentaquark states at the LHC. Phys. Lett. B 805, 135447 (2020)

    Google Scholar 

  318. X.-Y. Wang, J. He, X. Chen, Systematic study of the production of hidden-bottom pentaquarks via \(\gamma p\) and \(\pi ^{-}p\) scatterings. Phys. Rev. D 101, 034032 (2020)

    ADS  Google Scholar 

  319. X. Cao, F.-K. Guo, Y.-T. Liang, J.-J. Wu, J.-J. Xie, Y.-P. Xie, Z. Yang, B.-S. Zou, Photoproduction of hidden-bottom pentaquark and related topics. Phys. Rev. D 101, 074010 (2020)

    ADS  Google Scholar 

  320. D. Winney, C. Fanelli, A. Pilloni, A.N. Hiller Blin, C. Fernández-Ramírez, M. Albaladejo, V. Mathieu, V.I. Mokeev, A.P. Szczepaniak, Double polarization observables in pentaquark photoproduction. Phys. Rev. D 100, 034019 (2019)

    ADS  Google Scholar 

  321. Y.-P. Xie, X. Cao, Y.-T. Liang, X. Chen, Pentaquark \(P_c\) electroproduction in \(J/\psi +p\) channel in electron-proton collisions (2020)

  322. E. Paryev, Study of a possibility of observation of hidden-bottom pentaquark resonances in bottomonium photoproduction on protons and nuclei near threshold (2020)

  323. Z. Yang, X. Cao, Y.-T. Liang, J.-J. Wu, Identify the hidden charm pentaquark signal from non-resonant background in electron-proton scattering (2020)

  324. Z. Yang, F.-K. Guo, Lepto-production of hidden-charm exotic hadrons. In preparation

  325. C. Bignamini, B. Grinstein, F. Piccinini, A.D. Polosa, C. Sabelli, Is the \(X(3872)\) Production cross section at tevatron compatible with a hadron molecule interpretation? Phys. Rev. Lett. 103, 162001 (2009)

    ADS  Google Scholar 

  326. P. Artoisenet, E. Braaten, Estimating the production rate of loosely-bound hadronic molecules using event generators. Phys. Rev. D 83, 014019 (2011)

    ADS  Google Scholar 

  327. F.-K. Guo, U.-G. Meißner, W. Wang, Production of charged heavy quarkonium-like states at the LHC and the Tevatron. Commun. Theor. Phys. 61, 354–358 (2014)

    ADS  Google Scholar 

  328. F.-K. Guo, U.-G. Meißner, W. Wang, Z. Yang, Production of the bottom analogs and the spin partner of the \(X\)(3872) at hadron colliders. Eur. Phys. J. C 74, 3063 (2014)

    ADS  Google Scholar 

  329. M. Albaladejo, F.-K. Guo, C. Hanhart, U.-G. Meißner, J. Nieves, A. Nogga, Z. Yang, Note on X(3872) production at hadron colliders and its molecular structure. Chin. Phys. C 41, 121001 (2017)

    ADS  Google Scholar 

  330. T. Sjöstrand, S. Mrenna, P.Z. Skands, PYTHIA 6.4 physics and manual. JHEP 05, 026 (2006)

    ADS  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful for constructive comments from X. Cao, Z.-F. Cui, O. Denisov, F. Gao, S. Goloskokov, Y.-T. Liang and Z. Yang. This work is supported in part by: the Chinese Academy of Sciences (CAS), under Grant Nos. XDB34030300, QYZDB-SSW-SYS013; Jiangsu Province Hundred Talents Plan for Professionals; the National Natural Science Foundation of China (NSFC), under Grant Nos. 11835015, 11947302, 11961141012 and 11621131001 (the Sino-German Collaborative Research Center CRC110 “Symmetries and the Emergence of Structure in QCD”); and by the CAS Center for Excellence in Particle Physics (CCEPP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig D. Roberts.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Guo, FK., Roberts, C.D. et al. Selected Science Opportunities for the EicC. Few-Body Syst 61, 43 (2020). https://doi.org/10.1007/s00601-020-01574-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-020-01574-0

Navigation