Skip to main content
Log in

Nonequilibrium Green’s function method for quantum thermal transport

  • Review Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

This review deals with the nonequilibrium Green’s function (NEGF) method applied to the problems of energy transport due to atomic vibrations (phonons), primarily for small junction systems. We present a pedagogical introduction to the subject, deriving some of the well-known results such as the Laudauer-like formula for heat current in ballistic systems. The main aim of the review is to build the machinery of the method so that it can be applied to other situations, which are not directly treated here. In addition to the above, we consider a number of applications of NEGF, not in routine model system calculations, but in a few new aspects showing the power and usefulness of the formalism. In particular, we discuss the problems of multiple leads, coupled left-right-lead system, and system without a center. We also apply the method to the problem of full counting statistics. In the case of nonlinear systems, we make general comments on the thermal expansion effect, phonon relaxation time, and a certain class of mean-field approximations. Lastly, we examine the relationship between NEGF, reduced density matrix, and master equation approaches to thermal transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and notes

  1. J. Schwinger, Brownian motion of a quantum oscillator, J. Math. Phys., 1961, 2(3): 407

    ADS  MathSciNet  MATH  Google Scholar 

  2. L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics, Benjamin/Cummings, 1962

    MATH  Google Scholar 

  3. L. V. Keldysh, Diagram technique for nonequilibrium processes, Sov. Phys. JETP, 1965, 20: 1018

    MathSciNet  Google Scholar 

  4. K. C. Chou, Z. B. Su, B. L. Hao, and L. Yu, Equilibrium and nonequilibrium formalisms made unified, Phys. Rep., 1985, 118(1–2): 1

    ADS  MathSciNet  Google Scholar 

  5. P. Danielewicz, Quantum theory of nonequilibrium processes (I), Ann. Phys., 1984, 152(2): 239

    ADS  Google Scholar 

  6. J. Rammer and H. Smith, Quantum field-theoretical methods in transport theory of metals, Rev. Mod. Phys., 1986, 58(2): 323

    ADS  Google Scholar 

  7. M. Bonitz (Ed.), Progress in Nonequilibrium Green’s Functions, Singapore: World Scientific, 2000

    MATH  Google Scholar 

  8. M. Bonitz and D. Semkat (Eds.), Progress in Nonequilibrium Green’s Functions (II), Singapore: World Scientific, 2003

    MATH  Google Scholar 

  9. C. Caroli, R. Combescot, P. Nozieres, and D. Saint-James, Direct calculation of the tunneling current, J. Phys. C, 1971, 4(8): 916

    ADS  Google Scholar 

  10. Y. Meir and N. S. Wingreen, Landauer formula for the current through an interacting electron region, Phys. Rev. Lett., 1992, 68(16): 2512

    ADS  Google Scholar 

  11. A. Prociuk, H. Phillips, and B. D. Dunietz, Modeling transient aspects of coherence-driven electron transport, J. Phys.: Conf. Ser., 2010, 220: 012008

    ADS  Google Scholar 

  12. U. Aeberhard, Theory and simulation of quantum photovoltaic devices based on the non-equilibrium Green’s function formalism, J. Comput. Electron., 2011, 10(4): 394

    Google Scholar 

  13. N. A. Zimbovskaya and M. R. Pederson, Electron transport through molecular junctions, Phys. Rep., 2011, 509(1): 1

    ADS  Google Scholar 

  14. B. K. Nikolić, K. K. Saha, T. Markussen, and K. S. Thygesen, First-principles quantum transport modeling of thermoelectricity in single-molecule nanojunctions with graphene nanoribbon electrodes, J. Comput. Electron., 2012, 11(1): 78

    Google Scholar 

  15. J. S. Wang, J. Wang, and J. T. Lü, Quantum thermal transport in nanostructures, Eur. Phys. J. B, 2008, 62(4): 381

    ADS  Google Scholar 

  16. J. Lan, J. S. Wang, C. K. Gan, and S. K. Chin, Edge effects on quantum thermal transport in graphene nanoribbons: Tight-binding calculations, Phys. Rev. B, 2009, 79(11): 115401

    ADS  Google Scholar 

  17. P. E. Hopkins, P. M. Norris, M. S. Tsegaye, and A. W. Ghosh, Extracting phonon thermal conductance across atomic junctions: Nonequilibrium Green’s function approach compared to semiclassical methods, J. Appl. Phys., 2009, 106(6): 063503

    ADS  Google Scholar 

  18. Z. X. Xie, K. Q. Chen, and W. Duan, Thermal transport by phonons in zigzag graphene nanoribbons with structural defects, J. Phys.: Condens. Matter, 2011, 23(31): 315302

    ADS  Google Scholar 

  19. Z. Tian, K. Esfarjani, and G. Chen, Enhancing phonon transmission across a Si/Ge interface by atomic roughness: First-principles study with the Green’s function method, Phys. Rev. B, 2012, 86(23): 235304

    ADS  Google Scholar 

  20. M. Bachmann, M. Czerner, S. Edalati-Boostan, and C. Heiliger, Ab initio calculations of phonon transport in ZnO and ZnS, Eur. Phys. J. B, 2012, 85(5): 146

    ADS  Google Scholar 

  21. P. S. E. Yeo, K. P. Loh, and C. K. Gan, Strain dependence of the heat transport properties of graphene nanoribbons, Nanotechnology, 2012, 23(49): 495702

    Google Scholar 

  22. P. Brouwer, 2005, http://www.physics.udel.edu/~bnikolic/QTTG/shared/reviews/brouwer_notes.pdf

  23. H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, 5th Ed., Singapore: World Scientific, 2009

    MATH  Google Scholar 

  24. J. W. Jiang, J. S. Wang, and B. Li, Thermal expansion in single-walled carbon nanotubes and graphene: Nonequilibrium Green’s function approach, Phys. Rev. B, 2009, 80(20): 205429

    ADS  Google Scholar 

  25. B. K. Agarwalla, B. Li, and J. S. Wang, Full-counting statistics of heat transport in harmonic junctions: transient, steady states, and fluctuation theorems, Phys. Rev. E, 2012, 85(5 Pt 1): 051142

    ADS  Google Scholar 

  26. A. Böhm, Quantum Mechanics, Heidelberg: Springer-Verlag, 1979

    MATH  Google Scholar 

  27. K. Huang, Statistical Mechanics, 2nd Ed., New York: John Wiley & Sons, 1987

    MATH  Google Scholar 

  28. R. Kubo, Statistical-mechanical theory of irreversible processes (I): General theory and simple applications to magnetic and Conduction Problems, J. Phys. Soc. Jpn., 1957, 12(6): 570

    ADS  MathSciNet  Google Scholar 

  29. P. C. Martin and J. Schwinger, Theory of many-particle systems (I), Phys. Rev., 1959, 115(6): 1342

    ADS  MathSciNet  MATH  Google Scholar 

  30. A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems, McGraw-Hill, 1971

    Google Scholar 

  31. R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics II, Nonequilibrium Statistical Mechanics, Springer, 1992

    Google Scholar 

  32. A. Altland and B. Simons, Condsensed Matter Field Theory, 2nd Ed., Cambridge: Cambridge University Press, 2010

    Google Scholar 

  33. H. Haug and A. P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors, Springer, 1996

    Google Scholar 

  34. A. M. Zagoskin, Quantum Theory of Many-Body Systems, Springer, 1998

    MATH  Google Scholar 

  35. J. Rammer, Quantum Field Theory of Non-Equilibrium States, Cambridge: Cambridge University Press, 2007

    Google Scholar 

  36. M. Di Ventra, Electrical Transport in Nanoscale Systems, Cambridge: Cambridge University Press, 2008

    Google Scholar 

  37. A. Kamenev, Field Theory of Non-Equilibrium Systems, Cambridge: Cambridge University Press, 2011

    MATH  Google Scholar 

  38. D. C. Langreth, in: Linear and Nonlinear Electron Transport in Solids, edited by J. T. Devreese and E. van Doren, Plenum, 1976: 3–32

  39. C. Niu, D. L. Lin, and T. H. Lin, Equation of motion for nonequilibrium Green functions, J. Phys.: Condens. Matter, 1999, 11(6): 1511

    ADS  Google Scholar 

  40. A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics, Dover Publ., 1963

    MATH  Google Scholar 

  41. S. Doniach and E. H. Sondheimer, Green’s Functions for Solid State Physicists, W. A. Benjamin, 1974

    Google Scholar 

  42. G. D. Mahan, Many-Particle Physics, 3rd Ed., Kluwer Academic, 2000

    Google Scholar 

  43. H. Bruus and K. Flensberg, Many-Body Quantum Theory in Condensed Matter Physics: An introduction, Oxford: Oxford University Press, 2004

    Google Scholar 

  44. H. L. Friedman, A Course in Statistical Mechanics, Prentice-Hall, 1985

    Google Scholar 

  45. B. K. Agarwalla, Study of full-counting statistics in heat transport in transient and steady state and quantum fuctuation theorems, Ph.D. thesis, National University Singapore, 2013

    Google Scholar 

  46. P. C. K. Kwok, Green’s function method in lattice dynamics, Solid State Phys., 1968, 20: 213

    Google Scholar 

  47. M. L. Leek, Mathematical details in the application of nonequilibrium Green’s functions (NEGF) and quantum kinetic equations (QKE) to thermal transport, arXiv: 1207.6204, 2012

    Google Scholar 

  48. H. Kleinert, A. Pelster, B. Kastening, and M. Bachmann, Recursive graphical construction of Feynman diagrams and their multiplicities in φ4 and φ2A theory, Phys. Rev. E, 2000, 62(2): 1537

    ADS  Google Scholar 

  49. S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge: Cambridge University Press, 1995

    Google Scholar 

  50. R. Landauer, Spatial variation of currents and fields due to localized scatterers in metallic conduction, IBM J. Res. Develop., 1957, 1(3): 223

    MathSciNet  Google Scholar 

  51. R. Landauer, Electrical resistance of disordered onedimensional lattices, Philos. Mag., 1970, 21(172): 863

    ADS  Google Scholar 

  52. A. Ozpineci and S. Ciraci, Quantum effects of thermal conductance through atomic chains, Phys. Rev. B, 2001, 63(12): 125415

    ADS  Google Scholar 

  53. D. Segal, A. Nitzan, and P. Hänggi, Thermal conductance through molecular wires, J. Chem. Phys., 2003, 119(13): 6840

    ADS  Google Scholar 

  54. N. Mingo and L. Yang, Phonon transport in nanowires coated with an amorphous material: An atomistic Green’s function approach, Phys. Rev. B, 2003, 68(24): 245406

    ADS  Google Scholar 

  55. A. Dhar and D. Roy, Heat transport in harmonic lattices, J. Stat. Phys., 2006, 125(4): 805

    ADS  MathSciNet  Google Scholar 

  56. A. Dhar and D. Sen, Nonequilibrium Green’s function formalism and the problem of bound states, Phys. Rev. B, 2006, 73(8): 085119

    ADS  Google Scholar 

  57. J. S. Wang, J. Wang, and N. Zeng, Nonequilibrium Green’s function approach to mesoscopic thermal transport, Phys. Rev. B, 2006, 74(3): 033408

    ADS  Google Scholar 

  58. T. Yamamoto and K. Watanabe, Nonequilibrium Green’s function approach to phonon transport in defective carbon nanotubes, Phys. Rev. Lett., 2006, 96(25): 255503

    ADS  Google Scholar 

  59. W. Zhang, T. S. Fisher, and N. Mingo, The atomistic Green’s function method: An efficient simulation approach for nanoscale phonon transport, Numer. Heat Transf. B, 2007, 51(4): 333

    ADS  Google Scholar 

  60. S. G. Das and A. Dhar, Landauer formula for phonon heat conduction: Relation between energy transmittance and transmission coefficient, Eur. Phys. J. B, 2012, 85(11): 372

    ADS  Google Scholar 

  61. M. P. L. Sancho, J. M. L. Sancho, and J. Rubio, Quick iterative scheme for the calculation of transfer matrices: Application to Mo(100), J. Phys. F, 1984, 14(5): 1205

    ADS  Google Scholar 

  62. M. P. L. Sancho, J. M. L. Sancho, and J. Rubio, Highly convergent schemes for the calculation of bulk and surface Green functions, J. Phys. F, 1985, 15(4): 851

    ADS  Google Scholar 

  63. A. P. Arya, Introduction to Classical Mechanics, Allyn and Bacon, 1990, Chap. 15.

    Google Scholar 

  64. E. C. Cuansing, H. Li, and J. S. Wang, Role of the on-site pinning potential in establishing quasi-steady-state conditions of heat transport in finite quantum systems, Phys. Rev. E, 2012, 86(3): 031132

    ADS  Google Scholar 

  65. J. S. Wang, N. Zeng, J. Wang, and C. K. Gan, Nonequilibrium Green’s function method for thermal transport in junctions, Phys. Rev. E, 2007, 75(6): 061128

    ADS  Google Scholar 

  66. J. Wang and J. S. Wang, Mode-dependent energy transmission across nanotube junctions calculated with a lattice dynamics approach, Phys. Rev. B, 2006, 74(5): 054303

    ADS  Google Scholar 

  67. L. Zhang, P. Keblinski, J. S. Wang, and B. Li, Interfacial thermal transport in atomic junctions, Phys. Rev. B, 2011, 83(6): 064303

    ADS  Google Scholar 

  68. M. Büttiker, Four-terminal phase-coherent conductance, Phys. Rev. Lett., 1986, 57(14): 1761

    ADS  Google Scholar 

  69. M. Büttiker, Symmetry of electrical conduction, IBM J. Res. Develop., 1988, 32(3): 317

    Google Scholar 

  70. M. Büttiker, Absence of backscattering in the quantum Hall effect in multiprobe conductors, Phys. Rev. B, 1988, 38(14): 9375

    ADS  Google Scholar 

  71. Y. M. Blanter and M. Büttiker, Shot noise in mesoscopic conductors, Phys. Rep., 2000, 336(1–2): 1

    ADS  Google Scholar 

  72. L. Zhang, J.-S. Wang, and B. Li, Ballistic thermal rectification in nanoscale three-terminal junctions, Phys. Rev. B, 2010, 81(10): 100301(R)

    ADS  Google Scholar 

  73. Z. X. Xie, K. M. Li, L. M. Tang, C. N. Pan, and K. Q. Chen, Nonlinear phonon transport and ballistic thermal rectification in asymmetric graphene-based three terminal junctions, Appl. Phys. Lett., 2012, 100(18): 183110

    ADS  Google Scholar 

  74. A. Dhar and D. Roy, Heat transport in harmonic lattices, J. Stat. Phys., 2006, 125(4): 801

    ADS  MathSciNet  MATH  Google Scholar 

  75. D. Roy, Crossover from ballistic to diffusive thermal transport in quantum Langevin dynamics study of a harmonic chain connected to self-consistent reservoirs, Phys. Rev. E, 2008, 77(6): 062102

    ADS  Google Scholar 

  76. M. Bandyopadhyay and D. Segal, Quantum heat transfer in harmonic chains with self-consistent reservoirs: exact numerical simulations, Phys. Rev. E, 2011, 84(1): 011151

    ADS  Google Scholar 

  77. L. Zhang, J. S. Wang, and B. Li, Phonon Hall effect in fourterminal nano-junctions, New J. Phys., 2009, 11(11): 113038

    ADS  MathSciNet  Google Scholar 

  78. H. Li, B. K. Agarwalla, and J. S. Wang, Generalized Caroli formula for the transmission coefficient with lead-lead coupling, Phys. Rev. E, 2012, 86(1): 011141

    ADS  Google Scholar 

  79. M. Esposito, U. Harbola, and S. Mukamel, Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems, Rev. Mod. Phys., 2009, 81(4): 1665

    ADS  MathSciNet  MATH  Google Scholar 

  80. M. Campisi, P. Hänggi, and P. Talkner, Quantum fluctuation relations: Foundations and applications, Rev. Mod. Phys., 2011, 83(3): 771

    ADS  Google Scholar 

  81. U. Seifert, Stochastic thermodynamics, fluctuation theorems and molecular machines, Rep. Prog. Phys., 2012, 75(12): 126001

    ADS  MathSciNet  Google Scholar 

  82. M. L. Roukes, Yoctocalorimetry: Phonon counting in nanostructures, Physica B, 1999, 263: 1

    ADS  Google Scholar 

  83. H. Touchette, The large deviation approach to statistical mechanics, Phys. Rep., 2009, 478(1–3): 1

    ADS  MathSciNet  Google Scholar 

  84. H. Li, B. K. Agarwalla, and J. S. Wang, Cumulant generating function formula of heat transfer in ballistic systems with lead-lead coupling, Phys. Rev. B, 2012, 86(16): 165425

    ADS  Google Scholar 

  85. J. S. Wang, B. K. Agarwalla, and H. Li, Transient behavior of full counting statistics in thermal transport, Phys. Rev. B, 2011, 84(15): 153412

    ADS  Google Scholar 

  86. A. O. Gogolin and A. Komnik, Towards full counting statistics for the Anderson impurity model, Phys. Rev. B, 2006, 73(19): 195301

    ADS  Google Scholar 

  87. H. Li, B. K. Agarwalla, B. Li, and J. S. Wang, Cumulants of heat transfer in nonlinear quantum systems, arXiv: 1210.2798, 2012

    Google Scholar 

  88. L. S. Levitov and G. B. Lesovik, Charge distribution in quantum shot noise, JETP Lett., 1993, 58: 230

    ADS  Google Scholar 

  89. L. S. Levitov, H. Lee, and G. B. Lesovik, Electron counting statistics and coherent states of electric current, J. Math. Phys., 1996, 37(10): 4845

    ADS  MathSciNet  MATH  Google Scholar 

  90. K. Saito and A. Dhar, Fluctuation theorem in quantum heat conduction, Phys. Rev. Lett., 2007, 99(18): 180601

    ADS  Google Scholar 

  91. G. Gallavotti and E. G. D. Cohen, Dynamical ensembles in nonequilibrium statistical mechanics, Phys. Rev. Lett., 1995, 74(14): 2694

    ADS  Google Scholar 

  92. A. Kundu, S. Sabhapandit, and A. Dhar, Large deviations of heat flow in harmonic chains, J. Stat. Mech., 2011, 2011(03): P03007

    Google Scholar 

  93. K. Saito and A. Dhar, Generating function formula of heat transfer in harmonic networks, Phys. Rev. E, 2011, 83(4 Pt 1): 041121

    ADS  Google Scholar 

  94. E. C. Cuansing and J. S. Wang, Transient behavior of heat transport in a thermal switch, Phys. Rev. B, 2010, 81(5): 052302

    ADS  Google Scholar 

  95. N. W. Ashcroft and N. D. Mermin, Solid State Physics, Saunders College, 1976

    Google Scholar 

  96. J. W. Jiang, J. S. Wang, and B. Li, Thermal contraction in silicon nanowires at low temperatures, Nanoscale, 2010, 2(12): 2864

    ADS  Google Scholar 

  97. J. W. Jiang and J. S. Wang, Thermal expansion in multiple layers of graphene, arXiv: 1108.5820, 2011

    Google Scholar 

  98. A. A. Maradudin and A. E. Fein, Scattering of neutrons by an anharmonic crystal, Phys. Rev., 1962, 128(6): 2589

    ADS  Google Scholar 

  99. Y. Xu, J. S. Wang, W. Duan, B. L. Gu, and B. Li, Nonequilibrium Green’s function method for phonon-phonon interactions and ballistic-diffusive thermal transport, Phys. Rev. B, 2008, 78(22): 224303

    ADS  Google Scholar 

  100. N. Mingo, Anharmonic phonon flow through molecular-sized junctions, Phys. Rev. B, 2006, 74(12): 125402

    ADS  Google Scholar 

  101. M. Luisier, Atomistic modeling of anharmonic phononphonon scattering in nanowires, Phys. Rev. B, 2012, 86(24): 245407

    ADS  Google Scholar 

  102. J. T. Lü and J. S. Wang, Coupled electron and phonon transport in one-dimensional atomic junctions, Phys. Rev. B, 2007, 76(16): 165418

    ADS  Google Scholar 

  103. P. Myöhänen, A. Stan, G. Stefanucci, and R. van Leeuwen, Kadanoff-Baym approach to quantum transport through interacting nanoscale systems: From the transient to the steady-state regime, Phys. Rev. B, 2009, 80(11): 115107

    ADS  Google Scholar 

  104. L. A. Wu and D. Segal, Quantum heat transfer: A Born-Oppenheimer method, Phys. Rev. E, 2011, 83(5): 051114

    ADS  Google Scholar 

  105. L. Lindsay, D. A. Broido, and N. Mingo, Lattice thermal conductivity of single-walled carbon nanotubes: Beyond the relaxation time approximation and phonon-phonon scattering selection rules, Phys. Rev. B, 2009, 80(12): 125407

    ADS  Google Scholar 

  106. L. Zhang, J. Thingna, D. He, J.-S. Wang, and B. Li, Nonlinearity enchanced interfacial thermal conducntance and rectification, 2013 (in preparation)

    Google Scholar 

  107. D. He, S. Buyukdagli, and B. Hu, Thermal conductivity of anharmonic lattices: effective phonons and quantum corrections, Phys. Rev. E, 2008, 78(6): 061103

    ADS  Google Scholar 

  108. J. Thingna, Steady-state transport properties of anharmonic systems, Ph.D. thesis, National University Singapore, 2013

    Google Scholar 

  109. A. Dhar, K. Saito, and P. Hänggi, Nonequilibrium densitymatrix description of steady-state quantum transport, Phys. Rev. E, 2012, 85(1): 011126

    ADS  Google Scholar 

  110. H. P. Breuer and F. Petruccione, The Theory of Open Quantum Systems, Oxford: Oxford University Press, 2002

    MATH  Google Scholar 

  111. K. Saito, Strong evidence of normal heat conduction in a one-dimensional quantum system, Europhys. Lett., 2003, 61(1): 34

    ADS  Google Scholar 

  112. D. Segal and A. Nitzan, Spin-boson thermal rectifier, Phys. Rev. Lett., 2005, 94(3): 034301

    ADS  Google Scholar 

  113. D. Segal, Heat flow in nonlinear molecular junctions: Master equation analysis, Phys. Rev. B, 2006, 73(20): 205415

    ADS  Google Scholar 

  114. W. Pauli, in: Festschrift zum 60. Geburtstage A. Sommerfeld, Hirzel, Leipzig, 1928

    Google Scholar 

  115. A. O. Caldeira and A. J. Leggett, Path integral approach to quantum Brownian motion, Physica A, 1983, 121(3): 587

    ADS  MathSciNet  MATH  Google Scholar 

  116. A. G. Redfield, On the theory of relaxation processes, IBM J. Res. Develop., 1957, 1(1): 19

    MathSciNet  Google Scholar 

  117. G. Lindblad, On the generators of quantum dynamical semigroups, Commun. Math. Phys., 1976, 48(2): 119

    ADS  MathSciNet  MATH  Google Scholar 

  118. T. Mori and S. Miyashita, Dynamics of the density matrix in contact with a thermal bath and the quantum master equation, J. Phys. Soc. Jpn., 2008, 77(12): 124005

    ADS  Google Scholar 

  119. C. H. Fleming and N. I. Cummings, Accuracy of perturbative master equations, Phys. Rev. E, 2011, 83(3): 031117

    ADS  Google Scholar 

  120. J. Thingna, J. S. Wang, and P. Hänggi, Generalized Gibbs state with modified Redfield solution: exact agreement up to second order, J. Chem. Phys., 2012, 136(19): 194110

    ADS  Google Scholar 

  121. B. B. Laird, J. Budimir, and J. L. Skinner, Quantummechanical derivation of the Bloch equations: Beyond the weak-coupling limit, J. Chem. Phys., 1991, 94(6): 4391

    ADS  Google Scholar 

  122. S. Jang, J. Cao, and R. J. Silbey, Fourth-order quantum master equation and its Markovian bath limit, J. Chem. Phys., 2002, 116(7): 2705

    ADS  Google Scholar 

  123. S. Nakajima, On quantum theory of transport phenomena, Prog. Theor. Phys., 1958, 20(6): 948

    ADS  MathSciNet  MATH  Google Scholar 

  124. R. Zwanzig, Ensemble method in the theory of irreversibility, J. Chem. Phys., 1960, 33(5): 1338

    ADS  MathSciNet  Google Scholar 

  125. F. Shibata, Y. Takahashi, and N. Hashitsume, A generalized stochastic Liouville equation, non-Markovian versus memoryless master equations, J. Stat. Phys., 1977, 17(4): 171

    ADS  MathSciNet  Google Scholar 

  126. G. Nan, Q. Shi, and Z. Shuai, Nonperturbative time-convolutionless quantum master equation from the path integral approach, J. Chem. Phys., 2009, 130(13): 134106

    ADS  Google Scholar 

  127. J. Thingna, J. L. Garcá-Palacios, and J. S. Wang, Steadystate thermal transport in anharmonic systems: Application to molecular junctions, Phys. Rev. B, 2012, 85(19): 195452

    ADS  Google Scholar 

  128. L. A. Wu, C. X. Yu, and D. Segal, Nonlinear quantum heat transfer in hybrid structures: Sufficient conditions for thermal rectification, Phys. Rev. E, 2009, 80(4): 041103

    ADS  Google Scholar 

  129. J. Thingna and J.-S. Wang, 2013 (in preparation)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Sheng Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, JS., Agarwalla, B.K., Li, H. et al. Nonequilibrium Green’s function method for quantum thermal transport. Front. Phys. 9, 673–697 (2014). https://doi.org/10.1007/s11467-013-0340-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-013-0340-x

Keywords

Navigation