Skip to main content
Log in

Fluorescence lifetime imaging in biosciences: technologies and applications

  • Review Article
  • Published:
Frontiers of Physics in China Aims and scope Submit manuscript

Abstract

The biosciences require the development of methods that allow a non-invasive and rapid investigation of biological systems. In this aspect, high-end imaging techniques allow intravital microscopy in real-time, providing information on a molecular basis. Far-field fluorescence imaging techniques are some of the most adequate methods for such investigations. However, there are great differences between the common fluorescence imaging techniques, i.e., wide-field, confocal one-photon and two-photon microscopy, as far as their applicability in diverse bioscientific research areas is concerned. In the first part of this work, we briefly compare these techniques. Standard methods used in the biosciences, i.e., steady-state techniques based on the analysis of the total fluorescence signal originating from the sample, can successfully be employed in the study of cell, tissue and organ morphology as well as in monitoring the macroscopic tissue function. However, they are mostly inadequate for the quantitative investigation of the cellular function at the molecular level. The intrinsic disadvantages of steady-state techniques are countered by using time-resolved techniques. Among these fluorescence lifetime imaging (FLIM) is currently the most common. Different FLIM principles as well as applications of particular relevance for the biosciences, especially for fast intravital studies are discussed in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. Swedlow and M. Platani, Cell Struct. Funct., 2002, 27: 335

    Article  Google Scholar 

  2. J. A. Evans and N. S. Nishioka, Curr. Opin. Gastroenterol., 2005, 21: 578

    Article  Google Scholar 

  3. F. Saito and Y. Takahama, Tanpakushitsu Kakusan Koso, 2004, 49: 1592

    Google Scholar 

  4. A. Diaspro, G. Chirico, and M. Q. Collini, Rev. Biophys., 2005, 38: 97

    Article  Google Scholar 

  5. Y. Chen, J. D. Mills, and A. Periasamy, Differentiation, 2003, 71: 528

    Article  Google Scholar 

  6. J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, K. W. Berndt, and M. Johnson, Analytical Biochemistry, 1992, 202: 316

    Article  Google Scholar 

  7. H. Szmacinski, K. Nowaczyk, K. Berndt, and J. R. Lakowicz, Faseb Journal, 1992, 6: A35

    Google Scholar 

  8. E. Gratton, S. Breusegem, J. Sutin, Q. Ruan, and N. J. Barry, Biomed. Opt., 2003, 8: 381

    Article  Google Scholar 

  9. W. Becker, A. Bergmann, M. A. Hink, K. Konig, K. Benndorf, and C. Biskup, Microsc. Res. Tech., 2004, 63: 58

    Article  Google Scholar 

  10. W. Becker, A. Bergmann, E. Haustein, Z. Petrasek, P. Schwille, C. Biskup, L. Kelbauskas, K. Benndorf, N. Klocker, T. Anhut, I. Riemann, and K. Konig, Microsc. Res. Tech., 2006, 69: 186

    Article  Google Scholar 

  11. D. Elson, J. Requejo-Isidro, I. Munro, F. Reavell, J. Siegel, K. Suhling, P. Tadrous, R. Benninger, P. Lanigan, J. McGinty, C. Talbot, Treanor B, Webb S, Sandison A, Wallace A, Davis D, Lever J, M. Neil, D. Phillips, G. Stamp, and P. French, Photochem. Photobiol. Sci., 2004, 3: 795

    Article  Google Scholar 

  12. H. C. Gerritsen, J. M. Vroom, and C. J. de Grauw, IEEE Eng Med. Biol. Mag., 1999, 18: 31

    Article  Google Scholar 

  13. J. Behnsen, P. Narang, M. Hasenberg, F. Gunzer, U. Bilitewski, N. Klippel, M. Rohde, M. Brock, A. A. Brakhage, and M. Gunzer, PLoS. Pathog., 2007, 3: e13

    Article  Google Scholar 

  14. M. Gunzer, H. Riemann, Y. Basoglu, A. Hillmer, C. Weishaupt, S. Balkow, B. Benninghoff, B. Ernst, M. Steinert, T. Scholzen, C. Sunderkotter, and S. Grabbe, Blood, 2005, 106: 2424

    Article  Google Scholar 

  15. M. Gunzer, C. Weishaupt, A. Hillmer, Y. Basoglu, P. Friedl, K. E. Dittmar, W. Kolanus, G. Varga, and S. Grabbe, Blood, 2004, 104: 2801

    Article  Google Scholar 

  16. W. Denk, J. H. Strickler, and W. W. Webb, Science, 1990, 248: 73

    Article  ADS  Google Scholar 

  17. H. Inoue, S. E. Kudo, and A. Shiokawa, Nat. Clin. Pract. Gastroenterol. Hepatol., 2005, 2: 31

    Article  Google Scholar 

  18. T. Miyashita, Methods Mol. Biol., 2004, 261: 399

    Google Scholar 

  19. S. C. Kaufman, D. C. Musch, M. W. Belin, E. J. Cohen, D. M. Meisler, W. J. Reinhart, I. J. Udell, and W. S. Van Meter, Ophthalmology, 2004, 111: 396

    Article  Google Scholar 

  20. S. W. Hell and V. J. Andresen, Microsc., 2001, 202: 457

    Article  MathSciNet  Google Scholar 

  21. T. Nielsen, M. Fricke, D. Hellweg, and P. J. Andresen, Microsc., 2001, 201: 368

    Article  MathSciNet  Google Scholar 

  22. R. A. Niesner, V. Andresen, J. Neumann, H. Spiecker, and M. Gunzer, Biophys. J., 2007.

  23. A. Egner and S. W. Hell, Trends Cell Biol., 2005, 15: 207

    Article  Google Scholar 

  24. H. Kano, S. Jakobs, M. Nagorni, and S. W. Hell, Ultramicroscopy, 2001, 90: 207

    Article  Google Scholar 

  25. S. W. Hell and M. Schrader, van d., V, J. Microsc., 1997, 187: 1

    Article  Google Scholar 

  26. J. R. Lakowicz, Principles of Fluorescence Spectrsocopy, 2nd edition, edited by Kluwer Academic/Plenum Publishers: New York, Moskow, 1999

    Google Scholar 

  27. K. Konig and I. Riemann, Journal of Biomedical Optics, 2003, 8: 432

    Article  ADS  Google Scholar 

  28. J. R. Lakowicz and I. Gryczynski, Arabian Journal for Science and Engineering, 1992, 17: 261

    Google Scholar 

  29. M. Dyba, T. A. Klar, S. Jakobs, and S. W. Hell, Applied Physics Letters, 2000, 77: 597

    Article  ADS  Google Scholar 

  30. A. Squire, P. J. Verveer, and P. I. Bastiaens, J. Microsc., 2000, 197: 136

    Article  Google Scholar 

  31. J. Squire, and M. Mueller, Rev. Scientific Instruments, 2001, 72: 2855

    Article  ADS  Google Scholar 

  32. P. Herman, B. P. Maliwal, H. J. Lin, and J. R. Lakowicz, J. Microsc., 2001, 203: 176

    Article  MathSciNet  Google Scholar 

  33. P. I. Bastiaens and A. Squire, Trends Cell Biol., 1999, 9: 48

    Article  Google Scholar 

  34. A. Squire and P. I. Bastiaens, J. Microsc., 1999, 193: 36

    Article  Google Scholar 

  35. A. Squire, P. J. Verveer, O. Rocks, and P. I. Bastiaens, J. Struct. Biol., 2004, 147: 62

    Article  Google Scholar 

  36. P. J. Verveer, A. Squire, and P. I. Bastiaens, Biophys. J., 2000, 78: 2127

    Google Scholar 

  37. P. J. Verveer, A. Squire, and P. I. Bastiaens J. Microsc., 2001, 202: 451

    Article  MathSciNet  Google Scholar 

  38. K. Konig, P. T. So, W. W. Mantulin, B. J. Tromberg, and E. J. Gratton, Microsc., 1996, 183: 197

    Google Scholar 

  39. P. Herman, B. P. Maliwal, and J. R. Lakowicz, Anal. Biochem., 2002, 309: 19

    Article  Google Scholar 

  40. W. Becker, A. Bergmann, and C. Biskup, Microsc. Res. Tech., 2007, 70: 403

    Article  Google Scholar 

  41. B. P. De, D. M. Owen, H. B. Manning, C. B. Talbot, J. Requejo-Isidro, C. Dunsby, J. McGinty, R. K. Benninger, D. S. Elson, I. Munro, L. M. John, P. Anand, M. A. Neil, and P. M. French, Microsc. Res. Tech., 2007, 70: 481

    Article  Google Scholar 

  42. A. Schonle, M. Glatz, and S. W. Hell, Applied Optics, 2000, 39: 6306

    Article  ADS  Google Scholar 

  43. J. Systma, J. M. Vroom, C. J. de Grauw, and H. C. Gerritsen, J. Microsc., 1998, 191: 39

    Article  Google Scholar 

  44. L. K. van Geest, F. R. Boddeke, P. W. van Dijk, A. F. Kamp, C. J. R. van der Oord, and K. W. J. Stoop, Proc. SPIE, 1999

  45. H. C. Gerritsen, M. A. Asselbergs, A. V. Agronskaia, and W. G. Van Sark, J. Microsc., 2002, 206: 218

    Article  MathSciNet  Google Scholar 

  46. C. Biskup, T. Zimmer, L. Kelbauskas, B. Hoffmann, N. Klocker, W. Becker, A. Bergmann, and K. Benndorf, Microsc. Res. Tech., 2007, 70: 442

    Article  Google Scholar 

  47. S. Y. Breusegem, M. Levi, and N. P. Barry, Nephron Exp. Nephrol., 2006, 103: e41

    Article  Google Scholar 

  48. C. Biskup, L. Kelbauskas, T. Zimmer, K. Benndorf, A. Bergmann, W. Becker, J. P. Ruppersberg, C. Stockklausner, and N. J. Klocker, Biomed. Opt., 2004, 9: 753

    Article  Google Scholar 

  49. K. Dowling, M. J. Dayel, M. J. Lever, P. M. W. French, J. D. Hares, and A. K. L. Dymoke-Bradshaw, Optics Letters, 1998, 23: 810

    ADS  Google Scholar 

  50. R. Niesner, B. Peker, P. Schlüsche, and K. H. Gericke, Chemphyschem., 2004, 5: 1141

    Article  Google Scholar 

  51. A. Esposito, H. C. Gerritsen, and F. S. Wouters, Biophys. J., 2005, 89: 4286

    Article  Google Scholar 

  52. S. Pelet, M. J. Previte, L. H. Laiho, and P. T. So, Biophys. J., 2004, 87: 2807

    Article  ADS  Google Scholar 

  53. K. C. Lee, J. Siegel, S. E. Webb, S. Leveque-Fort, M. J. Cole, R. Jones, K. Dowling, M. J. Lever, and P. M. French, Biophys. J., 2001, 81: 1265

    Google Scholar 

  54. Z. Y. Zhang, T. Sun, K. T. V. Grattan, and A. W. Palmer, Proc. SPIE, 1997, 2980: 90

    Article  ADS  Google Scholar 

  55. A. V. Agronskaia, L. Tertoolen, and H. C. J. Gerritsen, Biomed. Opt., 2004, 9: 1230

    Article  Google Scholar 

  56. J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, and M. L. Johnson, Cell Calcium, 1992, 13: 131

    Article  Google Scholar 

  57. H. Szmacinski, I. Gryczynski, and J. R. Lakowicz, Photochem. Photobiol., 1993, 58: 341

    Article  Google Scholar 

  58. H. Szmacinski and J. R. Lakowicz, Anal. Biochem., 1997, 250: 131

    Article  Google Scholar 

  59. M. J. Behne, J. W. Meyer, K. M. Hanson, N. P. Barry, S. Murata, D. Crumrine, R. W. Clegg, E. Gratton, W. M. Holleran, P. M. Elias, and T. M. Mauro, J. Biol. Chem., 2002, 277: 47399

    Article  Google Scholar 

  60. M. J. Behne, N. P. Barry, K. M. Hanson, I. Aronchik, R. W. Clegg, E. Gratton, K. Feingold, W. M. Holleran, P. M. Elias, and T. M. Mauro, J. Invest Dermatol., 2003, 120: 998

    Article  Google Scholar 

  61. K. M. Hanson, M. J. Behne, N. P. Barry, T. M. Mauro, E. Gratton, and R. M. Clegg, Biophys. J., 2002, 83: 1682

    ADS  Google Scholar 

  62. H. J. Lin, P. Herman, J. S. Kang, and J. R. Lakowicz, Anal. Biochem., 2001, 294: 118

    Article  Google Scholar 

  63. H. J. Lin, P. Herman, and J. R. Lakowicz, Cytometry A, 2003, 52: 77

    Article  Google Scholar 

  64. R. Niesner, B. Peker, P. Schlusche, K. H. Gericke, C. Hoffmann, D. Hahne, and C. Müller-Goymann, Pharm. Res., 2005, 22: 1079

    Article  Google Scholar 

  65. C. Stehning and G. Holst, Proc. SPIE, 2001

  66. H. Szmacinski, F. N. Castellano, E. Terpetschnig, J. D. Dattelbaum, J. R. Lakowicz, and G. J. Meyer, Biochim. Biophys. Acta, 1998, 1383: 151

    Google Scholar 

  67. Z. Murtaza, P. Herman, and J. R. Lakowicz, Biophys. Chem., 1999, 80: 143

    Article  Google Scholar 

  68. P. Herman, Z. Murtaza, and J. R. Lakowicz, Anal. Biochem., 1999, 272: 87

    Article  Google Scholar 

  69. Y. Chen and A. Periasamy, Microsc. Res. Tech., 2004, 63: 72

    Article  Google Scholar 

  70. M. Elangovan, R. N. Day, and A. Periasamy, Biotechniques, 2002, 32: 1260

    Google Scholar 

  71. M. Elangovan, R. N. Day, and A. J. Periasamy, Microsc., 2002, 205: 3

    Article  MathSciNet  Google Scholar 

  72. M. Elangovan, H. Wallrabe, Y. Chen, R. N. Day, M. Barroso, and A. Periasamy, Methods, 2003, 29: 58

    Article  Google Scholar 

  73. B. K. Hoefelschweiger, L. Pfeifer, and O. S. Wolfbeis, Journal of Biomolecular Screening, 2005, 10: 687

    Article  Google Scholar 

  74. M. Jose, D. K. Nair, C. Reissner, R. Hartig, and W. Zuschratter, Biophys. J., 2007, 92: 2237

    Article  ADS  Google Scholar 

  75. S. Murata, P. Herman, and J. R. Lakowicz, J. Histochem. Cytochem., 2001, 49: 1443

    Google Scholar 

  76. S. Murata, P. Herman, and J. R. Lakowicz, Cytometry, 2001, 43: 94

    Article  Google Scholar 

  77. S. Murata, P. Herman, K. Mochizuki, T. Nakazawa, T. Kondo, N. Nakamura, J. R. Lakowicz, and R. J. Katoh, Histochem. Cytochem., 2003, 51: 951

    Google Scholar 

  78. S. Murata, P. Herman, M. Iwashina, K. Mochizuki, T. Nakazawa, T. Kondo, N. Nakamura, J. R. Lakowicz, and R. J. Katoh, Biomed. Opt., 2005, 10: 034008

    Google Scholar 

  79. D. K. Nair, M. Jose, T. Kuner, W. Zuschratter, and R. Hartig, Optics Express, 2006, 14: 12217

    Article  ADS  Google Scholar 

  80. R. Pepperkok, A. Squire, S. Geley, and P. I. Bastiaens, Curr. Biol., 1999, 9: 269

    Article  Google Scholar 

  81. A. Periasamy, M. Elangovan, E. Elliott, and D. L. Brautigan, Methods Mol. Biol., 2002, 183: 89

    Google Scholar 

  82. A. Esposito, C. P. Dohm, P. Kermer, M. Bahr, and F. S. Wouters, Neurobiol. Dis., 2007, 26: 521

    Article  Google Scholar 

  83. Y. Jia, A. Sytnik, L. Li, S. Vladimirov, B. S. Cooperman, and R. M. Hochstrasser, Proc. Natl. Acad. Sci. USA, 1997, 94: 7932

    Article  ADS  Google Scholar 

  84. M. Schuttpelz, C. Müller, H. Neuweiler, and M. Sauer, Anal. Chem., 2006, 78: 663

    Article  Google Scholar 

  85. A. D. Scully, R. B. Ostler, D. Phillips, P. O’Neill, K. Townsend, A. W. Parker, and A. J. MacRobert, Bioimaging, 1997, 5: 9

    Article  Google Scholar 

  86. B. Treanor, P. M. Lanigan, K. Suhling, T. Schreiber, I. Munro, M. A. Neil, D. Phillips, D. M. Davis, and P. M. French, J. Microsc., 2005, 217: 36

    Article  MathSciNet  Google Scholar 

  87. V. Barzda, C. J. de Grauw, J. Vroom, F. J. Kleima, G. R. van, A. H. van, and H. C. Gerritsen, Biophys. J., 2001, 81: 538

    Google Scholar 

  88. N. D. Evans, L. Gnudi, O. J. Rolinski, D. J. Birch, and J. C. Pickup, Diabetes Technol. Ther., 2003, 5: 807

    Article  Google Scholar 

  89. J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, and M. L. Johnson, Proceedings of the National Academy of Sciences of the United States of America, 1992, 89: 1271

    Article  ADS  Google Scholar 

  90. D. Schweitzer, S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, and A. Bergmann, Microsc. Res. Tech., 2007, 70: 410

    Article  Google Scholar 

  91. A. Esposito, H. C. Gerritsen, T. Oggier, F. Lustenberger, and F. S. Wouters, J. Biomed. Opt., 2006, 11: 34016

    Article  Google Scholar 

  92. A. Esposito, C. P. Dohm, M. Bahr, and F. S. Wouters, Mol. Cell Proteomics., 2007

  93. N. D. Evans, L. Gnudi, O. J. Rolinski, D. J. Birch, and J. C. Pickup, J. Photochem. Photobiol. B, 2005, 80: 122

    Article  Google Scholar 

  94. K. J. Halbhuber and K. König, Annals of Anatomy-Anatomischer Anzeiger, 2003, 185: 1

    Article  Google Scholar 

  95. L. Pfeifer, K. Stein, U. Fink, A. Welker, B. Wetzl, P. Bastian, and O. S. Wolfbeis, Journal of Fluorescence, 2005, 15: 423

    Article  Google Scholar 

  96. P. J. Tadrous, J. Siegel, P. M. French, S. Shousha, e. Lalani, and G. W. Stamp, J. Pathol., 2003, 199: 309

    Article  Google Scholar 

  97. S. Huang, A. A. Heikal, and W. W. Webb, Biophys J., 2002, 82: 2811

    Google Scholar 

  98. R. K. Benninger, B. Onfelt, M. A. Neil, D. M. Davis, and P. M. French, Biophys. J., 2005, 88: 609

    Article  ADS  Google Scholar 

  99. W. M. McClain, Journal of Chemical Physics, 1972, 57: 2264

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl-Heinz Gericke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niesner, R., Gericke, KH. Fluorescence lifetime imaging in biosciences: technologies and applications. Front. Phys. China 3, 88–104 (2008). https://doi.org/10.1007/s11467-008-0002-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-008-0002-6

Keywords

PACS numbers

Navigation