Skip to main content
Log in

On the Cauchy Problem for the New Shallow-water Models with Cubic Nonlinearity

  • Research Article
  • Published:
Frontiers of Mathematics Aims and scope Submit manuscript

Abstract

This paper is devoted to the new shallow-water model with cubic nonlinearity, which admits the single peaked solitons and multi-peakon solutions, and includes both the modified Camassa–Holm equation (also called Fokas–Olver–Rosenau–Qiao equation) and the Novikov equation as two special cases. On the one hand, based on a generalized Ovsyannikov type theorem, we prove the existence and uniqueness of solutions in the Gevrey–Sobolev spaces with the lower bound of the lifespan, and show the continuity of the data-to-solution map for the system. On the other hand, we prove the persistence properties in weighted spaces of the solution, provided that the initial potential satisfies a certain sign condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barostichi R.F., Himonas A.A., Petronilho G., Autonomous Ovsyannikov theorem and applications to nonlocal evolution equations and systems. J. Funct. Anal., 2016, 270(1): 330–358

    Article  MathSciNet  Google Scholar 

  2. Beals R., Sattinger D.H., Szmigielski J., Multi-peakons and a theorem of Stieltjes. Inverse Problems, 1999, 15(1): L1–L4

    Article  MathSciNet  Google Scholar 

  3. Brandolese L., Breakdown for the Camassa–Holm equation using decay criteria and persistence in weighted spaces. Int. Math. Res. Not. IMRN, 2012, 22: 5161–5181

    Article  MathSciNet  Google Scholar 

  4. Bressan A., Constantin A., Global conservative solutions of the Camassa–Holm equation. Arch. Ration. Mech. Anal., 2007, 183(2): 215–239

    Article  MathSciNet  Google Scholar 

  5. Bressan A., Constantin A., Global dissipative solutions of the Camassa–Holm equation. Anal. Appl. (Singap.), 2007, 5(1): 1–27

    Article  MathSciNet  Google Scholar 

  6. Camassa R., Holm D.D., An integrable shallow water equation with peaked solitons. Phys. Rev. Lett., 1993, 71(11): 1661–1664

    Article  MathSciNet  Google Scholar 

  7. Chen R.M., Hu T.Q., Liu Y., The shallow-water models with cubic nonlinearity. J. Math. Fluid Mech., 2022, 24(2): Paper No. 49, 31 pp.

  8. Chen R.M., Liu Y., Qu C.Z., Zhang S.H., Oscillation-induced blow-up to the modified Camassa–Holm equation with linear dispersion. Adv. Math., 2015, 272: 225–251

    Article  MathSciNet  Google Scholar 

  9. Constantin A., On the inverse spectral problem for the Camassa–Holm equation. J. Funct. Anal., 1998, 155(2): 352–363

    Article  MathSciNet  Google Scholar 

  10. Constantin A., Existence of permanent and breaking waves for a shallow water equation: a geometric approach. Ann. Inst. Fourier (Grenoble), 2000, 50(2): 321–362

    Article  MathSciNet  Google Scholar 

  11. Constantin A., On the scattering problem for the Camassa–Holm equation. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. A, 2001, 457(2008): 953–970

    Article  MathSciNet  Google Scholar 

  12. Constantin A., The trajectories of particles in Stokes waves. Invent. Math., 2006, 166(3): 523–535

    Article  MathSciNet  Google Scholar 

  13. Constantin A., Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis. CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 81, Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM), 2011

    Book  Google Scholar 

  14. Constantin A., Escher J., Wave breaking for nonlinear nonlocal shallow water equations. Acta Math., 1998, 181(2): 229–243

    Article  MathSciNet  Google Scholar 

  15. Constantin A., Escher J., Particle trajectories in solitary water waves. Bull. Amer. Math. Soc. (N.S.), 2007, 44(3): 423–431

    Article  MathSciNet  Google Scholar 

  16. Constantin A., Escher J., Analyticity of periodic traveling free surface water waves with vorticity. Ann. of Math. (2), 2011, 173(1): 559–568

    Article  MathSciNet  Google Scholar 

  17. Constantin A., Gerdjikov V., Ivanov I., Inverse scattering transform for the Camassa–Holm equation. Inverse Problems, 2006, 22(6): 2197–2207

    Article  MathSciNet  Google Scholar 

  18. Constantin A., Kappeler T., Kolev B., Topalov P., On geodesic exponential maps of the Virasoro group. Ann. Global Anal. Geom., 2007, 31(2): 155–180

    Article  MathSciNet  Google Scholar 

  19. Constantin A., Lannes D., The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations. Arch. Ration. Mech. Anal., 2009, 192(1): 165–186

    Article  MathSciNet  Google Scholar 

  20. Constantin A., McKean H.P., A shallow water equation on the circle. Comm. Pure Appl. Math., 1999, 52(8): 949–982

    Article  MathSciNet  Google Scholar 

  21. Constantin A., Strauss W., Stability of peakons. Comm. Pure Appl. Math., 2000, 53(5): 603–610

    Article  MathSciNet  Google Scholar 

  22. Constantin A., Strauss W., Stability of the Camassa–Holm solitons. J. Nonlinear Sci., 2002, 12(4): 415–422

    Article  MathSciNet  Google Scholar 

  23. Foias C., Temam R., Gevrey class regularity for the solutions of the Navier-Stokes equations. J. Funct. Anal., 1989: 87(2): 359–369

    Article  MathSciNet  Google Scholar 

  24. Fokas A., On a class of physically important integrable equations. Phys. D, 1995, 87(1–4): 145–150

    Article  MathSciNet  Google Scholar 

  25. Fu Y., Gui G.L., Liu Y., Qu C.Z., On the Cauchy problem for the integrable modified Camassa–Holm equation with cubic nonlinearity. J. Differential Equations, 2013, 255(7): 1905–1938

    Article  MathSciNet  Google Scholar 

  26. Fuchssteiner B., Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa–Holm equation. Phys. D, 1996, 95(3–4): 229–243

    Article  MathSciNet  Google Scholar 

  27. Fuchssteiner B., Fokas A.S., Symplectic structures, their Bäcklund transformation and hereditary symmetries. Phys. D, 1981/82, 4(1): 47–66

    Article  MathSciNet  Google Scholar 

  28. Gui G.L., Liu Y., On the global existence and wave-breaking criteria for the two-component Camassa–Holm system. J. Funct. Anal., 2010, 258(12): 4251–4278

    Article  MathSciNet  Google Scholar 

  29. Gui G.L., Liu Y., On the Cauchy problem for the two-component Camassa–Holm system. Math. Z., 2011, 268(1–2): 45–66

    Article  MathSciNet  Google Scholar 

  30. Gui G.L., Liu Y., Olver P., Qu C.Z., Wave-breaking and peakons for a modified Camassa–Holm equation. Comm. Math. Phys., 2013, 319(3): 731–759

    Article  MathSciNet  Google Scholar 

  31. Holden H., Raynaud X., Global conservative solutions of the Camassa–Holm equation—a Lagrangian point of view. Comm. Partial Differential Equations, 2007, 32(10–12): 1511–1549

    Article  MathSciNet  Google Scholar 

  32. Holden H., Raynaud X., Dissipative solutions for the Camassa–Holm equation. Discrete Contin. Dyn. Syst., 2009, 24(4): 1047–1112

    Article  MathSciNet  Google Scholar 

  33. Hone A.N.W., Lundmark H., Szmigielski J., Explicit multipeakon solutions of Novikov cubically nonlinear integrable Camassa–Holm type equation. Dyn. Partial Differ. Equ., 2009, 6(3): 253–289

    Article  MathSciNet  Google Scholar 

  34. Hone A.N.W., Wang J.P., Integrable peakon equations with cubic nonlinearity. J. Phys. A, 2008, 41(37): 372002, 10 pp.

    Article  MathSciNet  Google Scholar 

  35. Hu Q.Y., Qiao Z.J., Analyticity, Gevrey regularity and unique continuation for an integrable multi-component peakon system with an arbitrary polynomial function. Discrete Contin. Dyn. Syst., 2016, 36(12): 6975–7000

    Article  MathSciNet  Google Scholar 

  36. Jiang Z.H., Ni L.D., Blow-up phenomenon for the integrable Novikov equation. J. Math. Anal. Appl., 2012, 385(1): 551–558

    Article  MathSciNet  Google Scholar 

  37. Liu X.C., Liu Y., Qu C.Z., Orbital stability of the train of peakons for an integrable modified Camassa–Holm equation. Adv. Math., 2014, 255: 1–37

    Article  MathSciNet  Google Scholar 

  38. Liu Y., Olver P., Qu C.Z., Zhang S.H., On the blow-up of solutions to the integrable modified Camassa–Holm equation. Anal. Appl. (Singap.), 2014, 12(4): 355–368

    Article  MathSciNet  Google Scholar 

  39. Luo W., Yin Z.Y., Gevrey regularity and analyticity for Camassa–Holm type systems. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 2018, 18(3): 1061–1079

    MathSciNet  Google Scholar 

  40. Mi Y.S., Liu Y., Huang D.W., Guo B.L., Qualitative analysis for the new shallow-water model with cubic nonlinearity. J. Differential Equations, 2020, 269(6): 5228–5279

    Article  MathSciNet  Google Scholar 

  41. Misiołek A., Shallow water equation as a geodesic flow on the Bott–Virasoro group. J. Geom. Phys., 1998, 24(3): 203–208

    Article  MathSciNet  Google Scholar 

  42. Ni L.D., Zhou Y., Well-posedness and persistence properties for the Novikov equation. J. Differential Equations, 2011, 250(7): 3002–3021

    Article  MathSciNet  Google Scholar 

  43. Novikov V., Generalizations of the Camassa–Holm equation. J. Phys. A, 2009, 42(34): 342002, 14 pp.

    Article  MathSciNet  Google Scholar 

  44. Olver P., Rosenau P., Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support. Phys. Rev. E (3), 1996, 53(2): 1900–1906

    Article  MathSciNet  Google Scholar 

  45. Qiao Z.J., A new integrable equation with cuspons and W/M-shape-peaks solitons. J. Math. Phys., 2006, 47(11): 112701, 9 pp.

    Article  MathSciNet  Google Scholar 

  46. Qu C.Z., Liu X.C., Liu Y., Stability of peakons for an integrable modified Camassa–Holm equation with cubic nonlinearity. Comm. Math. Phys., 2013, 322(3): 967–997

    Article  MathSciNet  Google Scholar 

  47. Wu X.L., Guo B.L., The exponential decay of solutions and traveling wave solutions for a modified Camassa–Holm equation with cubic nonlinearity. J. Math. Phys., 2014, 55(8): 081504, 17 pp.

    Article  MathSciNet  Google Scholar 

  48. Wu X.L., Yin Z.Y., Global weak solutions for the Novikov equation. J. Phys. A, 2011, 44(5): 055202, 17 pp.

    Article  MathSciNet  Google Scholar 

  49. Wu X.L., Yin Z.Y., Well-posedness and global existence for the Novikov equation. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 2012, 11(3): 707–727

    MathSciNet  Google Scholar 

  50. Yan W., Li Y.S., Zhang Y.M., Global existence and blow-up phenomena for the weakly dissipative Novikov equation. Nonlinear Anal., 2012, 75(4): 2464–2473

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work was supported by NSF of Chongqing (Nos. cstc2020jcyj-jqX0025, CSTB2023NSCQ-LZX0035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongsheng Mi.

Ethics declarations

Conflict of Interest The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mi, Y., Guo, B. On the Cauchy Problem for the New Shallow-water Models with Cubic Nonlinearity. Front. Math 19, 435–455 (2024). https://doi.org/10.1007/s11464-021-0319-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11464-021-0319-9

Keywords

MSC2020

Navigation