Skip to main content
Log in

Well-posedness and wave breaking for a shallow water wave model with large amplitude

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

Considered herein is the Cauchy problem of a model for shallow water waves of large amplitude. Using Littlewood–Paley decomposition and transport equation theory, we establish the local well-posedness of the equation in Besov spaces \(B^s_{p,r} \) with \(1\le p,r \le +\infty \) and \(s>\max \{1+\frac{1}{p },\frac{3}{2}\}\) (and also in Sobolev spaces \(H^s=B^s_{2,2}\) with \(s>3/2\)). Then, the precise blow-up mechanism for the strong solutions is determined in the lowest Sobolev space \(H^s \) with \(s>3/2\). Our results improve the corresponding work for this model in Quirchmayr (J Evol Equ 16:539–567, 2016), in which the Sobolev index \(s=3\) is required. In addition, we also investigate the asymptotic behaviors of the strong solutions to this equation at infinity within its lifespan provided the initial data lie in weighted \(L_{p,\phi }:=L_p(\mathbb {R},\phi ^pdx)\) spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Aldroubi and K. Gröchenig, Nonuniform sampling and reconstruction in shift-invariant spaces, SIAM Review, 43 (2001), 585–620.

    Article  MathSciNet  Google Scholar 

  2. H. Bahouri, J. Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Springer-Verlag, Berlin, Heidelberg, 2011.

    Book  Google Scholar 

  3. T.B. Benjamin, J.L. Bona and J.J. Mahoney, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. R. Soc. Lond. A, 227 (1972), 47–78.

    Google Scholar 

  4. L. Brandolese, Breakdown for the Camassa–Holm equation using decay criteria and persistence in weighted spaces, Int. Math. Res. Not., 22 (2012), 5161–5181.

    Article  MathSciNet  Google Scholar 

  5. R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Letters 71 (1993), 1661–1664.

    Article  MathSciNet  Google Scholar 

  6. R. Camassa, D. Holm and J. Hyman, A new integrable shallow water equation, Adv. Appl. Mech. 31 (1994), 1–33.

    Article  Google Scholar 

  7. A. Constantin, Existence of permanent and breaking waves for a shallow water equation: a geometric approach, Ann. Inst. Fourier (Grenoble), 50 (2000), 321–362.

    Article  MathSciNet  Google Scholar 

  8. A. Constantin and J. Escher, Well-posedness, global existence and blow-up phenomena for a periodic quasi-linear hyperbolic equation, Comm. Pure Appl. Math. 51 (1998), 475–504.

    Article  MathSciNet  Google Scholar 

  9. A. Constantin, D. Lannes, The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations, Arch. Ration. Mech. Anal., 192 (2009), 165–186.

    Article  MathSciNet  Google Scholar 

  10. R. Danchin, Fourier analysis methods for PDEs, Lecture Notes, 14 November, 2003.

  11. R. Danchin, A note on well-posedness for Camassa–Holm equation, J. Differential Equations, 192 (2003) 429–444.

    Article  MathSciNet  Google Scholar 

  12. N. Duruk Mutlubaş and A. Geyer, Orbital stability of solitary waves of moderate amplitude in shallow water, J. Differential Equations, 255 (2013), 254–263.

    Article  MathSciNet  Google Scholar 

  13. A. Fokas and B. Fuchssteiner, Symplectic structures, their Bäcklund transformation and hereditary symmetries, Phys. D, 4 (1981), 47–66.

    Article  MathSciNet  Google Scholar 

  14. A. Geyer, Solitary traveling water waves of moderate amplitude, J. Nonlinear Math. Phys., 19 (2012), 1240010.

    Article  MathSciNet  Google Scholar 

  15. R. S. Johnson, Camassa–Holm, Korteweg–de Vries and related models for water waves, J. Fluid Mech., 455 (2002), 63–82.

    Article  MathSciNet  Google Scholar 

  16. T. Kato, Quasi-linear equations of evolution with applications to partial differential equations, in: Spectral Theory and Differential Equations, in: Lecture Notes in Math., vol. 448, Springer-Verlag, Berlin, 1975, 25–70

    Google Scholar 

  17. D. J. Korteweg and G. de Vries On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves, Philos. Mag., 39 (1895), 422–443.

    Article  MathSciNet  Google Scholar 

  18. R. Quirchmayr, A new highly nonlinear shallow water wave equation, J. Evol. Equ., 16 (2016), 539–567.

    Article  MathSciNet  Google Scholar 

  19. S. Zhou, Persistence properties for a generalized Camassa–Holm equation in weighted \(L^p\) spaces, J. Math. Anal. Appl. 410 (2014), 932–938.

  20. S. Zhou and C. Mu, Global conservative solutions for a model equation for shallow water waves of moderate amplitude, J. Differential Equations, 256 (2014), 1793–1816.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouming Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by University Young Core Teacher Foundation of Chongqing and the Talent Project of Chongqing Normal University (Grant No. 14CSBJ05), and Technology Research Foundation of Chongqing Educational Committee (Grant No. KJ1703043).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, S. Well-posedness and wave breaking for a shallow water wave model with large amplitude. J. Evol. Equ. 20, 141–163 (2020). https://doi.org/10.1007/s00028-019-00518-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-019-00518-4

Keywords

Mathematics Subject Classification

Navigation