We investigate the second-order work for specific loading paths in standard element tests (Sects. 4.1–4.2) and give a more general perspective in Sect. 4.3.
Undrained triaxial test
The undrained triaxial test is an illustrative example to explain vanishing second-order work inside the critical stress surface. As it is a rectilinear extension, we set \({\mathbf {D}}=\dot{\varvec{\varepsilon }}\). For an undrained test applies \({\hbox {tr}}{\mathbf {D}}=0\) (i.e. \({\dot{\varepsilon }}_{\text {vol}}={\dot{\varepsilon }}_1+2 {\dot{\varepsilon }}_2=0\)) and therefore \({\dot{\varepsilon }}_2=-1/2\cdot {\dot{\varepsilon }}_1\).
$$\begin{aligned} {\hbox {tr}}({\dot{{\mathbf {T}}}}{\mathbf {D}})={\dot{T}}_{1}\cdot {\dot{\varepsilon }}_1+2\cdot {\dot{T}}_{2}\cdot {\dot{\varepsilon }}_2={\dot{T}}_{1}\cdot {\dot{\varepsilon }}_1-{\dot{T}}_{2}\cdot {\dot{\varepsilon }}_1= -{\dot{q}}\cdot {\dot{\varepsilon }}_1. \end{aligned}$$
(20)
From Eq. 20 follows \({\hbox {tr}}({\dot{{\mathbf {T}}}}{\mathbf {D}})=0\) for \({\dot{q}} =0\), cf. Fig. 1. Tests controlled with dead loads are not possible beyond the maximum of q (\({\dot{q}} =0\) and \({\dot{\varepsilon }}_1\ne 0\)). The experimental results in Fig. 1a refer to London clay by Gasparre [6], in Fig. 1b normally consolidated London clay samples are simulated with barodesy [20], cf. Table 1 for parameters. The solid line marks the points of vanishing second-order work, the dot-dashed line is the critical state line. The maximum of q (\({\dot{q}}=0\) and \({\hbox {tr}}({\dot{{\mathbf {T}}}}{\mathbf {D}})=0\)) is clearly visible. Note that the mobilized friction angle at the maximum of q is lower than at critical state (marked with the crosses \(+\) in Fig. 1).
Table 1 Critical state soil mechanics parameters used for the calibration of barodesy In Appendix 2, we add the drained triaxial test as an illustrative example to investigate second-order work in barodesy.
Non-conventional drained triaxial tests
We consider drained triaxial tests with reduction of p at \(q=\) const. For normally consolidated Weald clay (for parameters see Table 1) we set \(p_{\text {ini}}=50\) kPa, \(p_{\text {ini}}=100\) kPa and \(p_{\text {ini}}=200\) kPa. The tests start as conventional drained triaxial tests and at \(\sigma _1=1/K_0\cdot \sigma _2\) the mean effective stress p is decreased by increasing the pore pressure, cf. similar experiments by Lade [15] and simulations by Wan and Pinheiro [34]. A reduction in the mean stress is obtained e.g. in the case of an excavation [8]. For the tests in Fig. 2a, the deviatoric stress remains constant (\(q=75\) kPa for test A, \(q=150\) kPa for test B, \(q=300\) kPa for test C), hence \({\dot{q}}=0\). The second-order work according to equation 37 simplifies thus to \({\hbox {tr}}({\dot{{\mathbf {T}}}}{\mathbf {D}})={\dot{p}} \cdot {\dot{\varepsilon }}_{\text {vol}}\). With decreasing p, i.e. \({\dot{p}} \ne 0\), the second-order work vanishes for this specific loading path at \({\dot{\varepsilon }}_{\text {vol}}=0\). Simulations with barodesy show that in the non-conventional drained triaxial tests of Fig. 2, the second-order work vanishes inside the critical limit surface.
Figure 2a shows the stress paths of the non-conventional triaxial tests. The stress states with \({\hbox {tr}}({\dot{{\mathbf {T}}}}{\mathbf {D}})=0\) are marked with circles (\(\circ\)) and connected with a line. In Fig. 2b, c the solid line shows the volumetric strain and the dashed line the second-order work of test A. It is visible that second-order work is zero at the local maximum of \(\varepsilon _{\text {vol}}\), i.e. \({\dot{\varepsilon }}_{\text {vol}}=0\), which has experimentally been confirmed: a sudden collapse is reported to occur [3, 17] at the local maximum of volumetric strain. The mobilized friction angle at \({\hbox {tr}}({\dot{{\mathbf {T}}}}{\mathbf {D}}) =0\) is smaller than the mobilized friction angle at critical state, cf. Fig. 2a.
Investigations in the deviatoric plane
The following analysis has been carried out numerically. We consider the deviatoric plane \({\hbox {tr}}{\mathbf {T}}=-500\) kPa \(=\) const. in the principal stress space spanned by \(T_1, T_2, T_3\) and we search for the boundary of the region where tr\(({\dot{{\mathbf {T}}}}{\mathbf {D}})>0\). We examine stress rays starting from the hydrostatic axis \(T_1=T_2=T_3\). On each ray, we step forward with small increments of deviatoric stress. At each step, we check whether there are \({\mathbf {D}}\) tensors such that the condition tr\(({\dot{{\mathbf {T}}}}{\mathbf {D}})=0\) is fulfilled.
To this end, it is sufficient to check tensors \({\mathbf {D}}^0\), coaxial to \({\mathbf {T}}\), distributed in all directions of the space \(D_1,D_2,D_3\), with the magnitude \(\vert {\mathbf {D}}\vert =1\), the polar angle \(0<\theta <\pi\), and azimuth angle \(0<\phi <2\pi\). The principal values of \({\mathbf {D}}\) are:
$$\begin{aligned} D_1= \sin \theta \cdot \cos \phi \end{aligned}$$
(21)
$$\begin{aligned} D_2= \sin \theta \cdot \sin \phi \end{aligned}$$
(22)
$$\begin{aligned} D_3= \cos \theta \end{aligned}$$
(23)
We vary \(\theta\) and \(\phi\) independently on each stress ray for every step and search for minimum values of second-order work. As soon as tr\(({\dot{{\mathbf {T}}}}{\mathbf {D}})=0\) is encountered, the stress state \({\mathbf {T}}\) belongs to the searched boundary.
The Mohr–Coulomb yield locus in the deviatoric plane corresponds to a hexagon and the mobilized friction angle \(\varphi _{\mathrm{m}}\) readsFootnote 3:
$$\begin{aligned} \sin \varphi _{\mathrm{m}}=\frac{T_{\text {min}}-T_{\text {max}}}{T_{\text {min}}+T_{\text {max}}}. \end{aligned}$$
(24)
In barodesy, the cone of critical stress states practically coincides with the locus according to Matsuoka–Nakai [5, 21] and is characterized through Eq. 25:
$$\begin{aligned} \frac{\left( \sigma _1+\sigma _2+\sigma _3\right) \left( \sigma _1\sigma _2+\sigma _1\sigma _3+\sigma _2\sigma _3\right) }{\sigma _1\sigma _2\sigma _3}=\frac{9-\sin ^2\varphi _{\mathrm{c}}}{1-\sin ^2\varphi _{\mathrm{c}}}. \end{aligned}$$
(25)
In Fig. 3, vanishing second-order work is investigated with barodesy for Weald clay (\(\varphi _{\mathrm{c}}=24^\circ\)). The following results are obtained:
-
For normally consolidated soilFootnote 4 (OCR \(=1\) and \(e>e_{\text {c}}\)) this cone lies inside the cone of critical stress states (Eq. 25).
-
For \(e=e_{\text {c}}\) (\(p_{\text {e}}/p=2\) respectively), the cone of critical states and the cone of \({\hbox {tr}}{({\dot{{\mathbf {T}}}} {\mathbf {D}})}=0\) differ only slightly: However, the cone of vanishing second-order work lies inside the cone of critical stress states.
-
For highly overconsolidated soil \(e<e_{\mathrm{c}}\) (OCR = 6), the cone with \({\hbox {tr}}{({\dot{{\mathbf {T}}}} {\mathbf {D}})}=0\) lies outside the cone of critical stress states.
In Fig. 5a–c, stress locations in the deviatoric plane (\({\hbox {tr}}{\mathbf {T}}=\) const), characterized by the Lode angle \(\alpha _\sigma\) (Eq. 26), are further investigated. The Lode angle \(\alpha _\sigma\) is defined as follows:
$$\begin{aligned}&\alpha _\sigma =\dfrac{1}{3}\arcsin {\dfrac{-3\sqrt{6}\det {{\mathbf {T}}^*}}{|{\mathbf {T}}^*|^3}} \nonumber \\&\quad {\hbox {with}}\quad {\mathbf {T}}^*={\mathbf {T}}-\frac{1}{3}\cdot {{\hbox {tr}}{\mathbf {T}}}\cdot {\mathbf {1}} \end{aligned}$$
(26)
\(\alpha _\sigma =30^\circ\) holds for triaxial compression and \(\alpha _\sigma =-30^\circ\) holds for triaxial extension. The angle \(\beta\) between the directions of stress \({\mathbf {T}}^0\) and stretching \({\mathbf {D}}^0\) reads, cf. [7]:
$$\begin{aligned} \cos \beta ={\mathbf {T}}^0\cdot {\mathbf {D}}^0={\hbox {tr}}({\mathbf {T}}^0\,{\mathbf {D}}^0) \end{aligned}$$
(27)
For the undrained triaxial tests (with a prescribed \({\mathbf {D}}\), i.e. \(D_1=-1\), \(D_2=D_3=0.5\) and \({\hbox {tr}}{\mathbf {D}}^0=0\)) in Fig. 1b \(\beta\) is approximately \(63.6^\circ\) and the mobilized friction angle is \(\varphi _{W_2}\approx 21.3^\circ\), when \(W_2=0\). A variation of \({\mathbf {D}}\) according to Eqs. 21–23 in order to find vanishing values of \(W_2\) results in a slightly lower mobilized friction angle of \(\varphi _{W_2}=21.1^\circ\). This variation was carried out at axisymmetric stress states. The critical friction angle of London clay is \(22.6^\circ\).
For the non-conventional triaxial tests in Fig. 2, \(\beta\) is approximately \(86.4^\circ\) and the mobilized friction angle \(\varphi _{W_2}\) is approximately \(22.340^\circ\), which is also lower than the critical friction angle of Weald clay with \(24^\circ\). A variation of \({\mathbf {D}}\) according to Eqs. 21–23 in order to find vanishing values of \(W_2\) results in a slightly lower mobilized friction angle of \(\varphi _{W_2}=22.336^\circ\).
Figures 4 and 5 give a more general view of the vanishing second-order work locus:
-
In Fig. 4 a 3D representation of surfaces formed by \({\hbox {tr}}{({\dot{{\mathbf {T}}}} {\mathbf {D}})}=0\) for three different overconsolidation ratios (OCR \(=1\), OCR \(=2\) and OCR \(=6\) according to Fig. 3) is shown. The cross section of the critical stress surface of barodesy (Eq. 25) with the deviatoric plane \({\hbox {tr}}{\mathbf {T}}=-500\) kPa is added.
-
Figure 5a shows the mobilized friction angles \(\varphi _{W_2}\) (obtained with \(\sin \varphi _{\mathrm{m}}=\frac{T_{\text {min}}-T_{\text {max}}}{T_{\text {min}}+T_{\text {max}}}\)) along the \({\hbox {tr}}({\dot{{\mathbf {T}}}}{\mathbf {D}})=0\) locus versus \(\alpha _\sigma\). For normally consolidated samples (OCR \(= 1\)), the minimum mobilized friction angle is \(\varphi _{W_2}\approx 18^\circ\), which is only \(3^\circ\) higher than the mobilized friction angle under oedometric conditions estimated with Jáky’s relation.Footnote 5 Similar results have been obtained with hypoplasticity [7]. For the OCR \(=2\), the cone of vanishing second-order work lies slightly inside the cone of critical states, cf. Fig. 5a. For highly overconsolidated soil, \(\varphi _{W_2}\) is higher than \(\varphi _{W_2}\) of the critical stress surface, cf. Fig. 5a.
-
Furthermore for OCR \(=1\) the angle \(\beta\) between normalized stress \({\mathbf {T}}^0\) and stretching \({\mathbf {D}}^0\) according to Eq. 27 is \(63^\circ<\beta <69^\circ\), cf. Fig. 5b, the lower the void ratio (the higher the OCR), the higher the angle \(\beta\). For highly overconsolidated soil, the angle \(\beta\) (\(77^\circ<\beta <82^\circ\)) in Fig. 5b is higher than for slightly overconsolidated or normally consolidated soil.
-
Figure 5c shows the dilatancy \(\delta ={\hbox {tr}}{\mathbf {D}}^0\) in dependence of the Lode angle \(\alpha _\sigma\). For normally consolidated clay (OCR \(=1\)), the behaviour is slightly contractant (\({\hbox {tr}}{\mathbf {D}}^0\approx -0.2\)). Note that \({\hbox {tr}}{\mathbf {D}}^0=0\) describes isochoric deformation and \({\hbox {tr}}{\mathbf {D}}^0=-1\) applies for oedometric compression. In addition, the angle of dilatancy \(\psi\) is also shown in Fig. 5c.Footnote 6 For an overconsolidation ratio of 2, clay is slightly dilatant (\({\hbox {tr}}{\mathbf {D}}^0\approx 0.1\)), for overconsolidated samples (OCR \(=6\)), \({\hbox {tr}}{\mathbf {D}}^0\approx 0.4\), cf. Fig. 5c. Arthur et al. [1] (cited in [33]) report that the angles of dilatancy \(\psi\) in the shear plane in dense biaxial tests with sand were about \(9^\circ \le \psi \le 30^\circ\). Simulations of overconsolidated samples (OCR \(=2\ldots 6\)) with barodesy result in angles of dilatancy in the range of \(3^\circ<\psi <14^\circ\), see Fig. 5c. As in this article, clay samples with arbitrary overconsolidation ratios are investigated, only a qualitative comparison of the values for \(\psi\) is possible.
Attention should be paid to normally consolidated/slightly overconsolidated soils, where second-order work may vanish inside the critical stress surface. The results provide a basis for finite element applications, as shown below.