Skip to main content
Log in

Clay hypoplasticity with explicitly defined asymptotic states

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

A new rate-independent hypoplastic model for clays is developed. The model is based on the recently proposed approach enabling explicit incorporation of the predefined asymptotic state boundary surface and corresponding asymptotic strain rate direction into hypoplasticity. Several shortcomings of the existing hypoplastic model for clays are identified and corrected using the proposed approach. Thanks to the independent formulation of the individual model components, the new model is more suitable to form a basis for further developments and enhancements than the original one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. Note that the requirement No. 4 is satisfied only approximately with the condition by Matsuoka and Nakai [23], as F m  = 1 does not exactly represent the boundary of compressive stresses.

References

  1. Ali A, Meier T, Herle I (2011) Numerical investigation of undrained cavity expansion in fine-grained soils. Acta Geotechnica 6:31–40

    Article  Google Scholar 

  2. Bardet JP (1990) Lode dependences for isotropic pressure-sensitive elastoplastic materials. J Appl Mech 57:498–506

    Article  Google Scholar 

  3. Butterfield R (1979) A natural compression law for soils. Géotechnique 29(4):469–480

    Article  Google Scholar 

  4. Callisto L, Calabresi G (1998) Mechanical behaviour of a natural soft clay. Géotechnique 48(4):495–513

    Article  Google Scholar 

  5. Chambon R, Desrues J, Hammad W, Charlier R (1994) CLoE, a new rate–type constitutive model for geomaterials. theoretical basis and implementation. Int J Numer Anal Methods Geomech 18:253–278

    Article  MATH  Google Scholar 

  6. D’Onza F, Gallipoli D, Wheeler S, Casini F, Vaunat J, Khalili N, Laloui L, Mancuso C, Mašín D, Nuth M, Pereira M, Vassallo R (2011) Benchmark of constitutive models for unsaturated soils. Géotechnique 61(4):283–302

    Article  Google Scholar 

  7. Fuentes W, Triantafyllidis T, Lizcano A (2012) Hypoplastic model for sands with loading surface. Acta Geotechnica 7:177–192

    Article  Google Scholar 

  8. Gudehus G (1996) A comprehensive constitutive equation for granular materials. Soils Found 36(1):1–12

    Article  Google Scholar 

  9. Gudehus G (2004) A visco-hypoplastic constitutive relation for soft soils. Soils Found 44(4):11–25

    Article  Google Scholar 

  10. Gudehus G (2011) Physical soil mechanics. Springer, Berlin

    Book  Google Scholar 

  11. Gudehus G, Amorosi A, Gens A, Herle I, Kolymbas D, Mašín D, Muir Wood D, Nova R, Niemunis A, Pastor M, Tamagnini C, Viggiani G (2008) The soilmodels info project. Int J Numer Anal Methods Geomech 32(12):1571–1572

    Article  Google Scholar 

  12. Gudehus G, Mašín D (2009) Graphical representation of constitutive equations. Géotechnique 59(2):147–151

    Article  Google Scholar 

  13. Hájek V, Mašín D, Boháč J (2009) Capability of constitutive models to simulate soils with different OCR using a single set of parameters. Comput Geotech 36(4):655–664

    Article  Google Scholar 

  14. Hattab M, Hicher PY (2004) Dilating behaviour of overconsolidated clay. Soils Found 44(4):27–40

    Article  Google Scholar 

  15. Henkel DJ (1956) The effect of overconsolidation on the behaviour of clays during shear. Géotechnique 6:139–150

    Article  Google Scholar 

  16. Herle I, Kolymbas D (2004) Hypoplasticity for soils with low friction angles. Comput Geotech 31(5):365–373

    Article  Google Scholar 

  17. Herle I, Mašín D, Kostkanová V, Karcher C, Dahmen D (2011) Experimental investigation and theoretical modelling of soft soils from mining deposits. In: Chung CK, Jung YH, Kim HK, Lee JS, Kim DS (eds) Proceedings of the 5th international symposium on deformation characteristics of geomaterials, Seoul, Korea, vol 2. pp 858–864

  18. Huang WX, Wu W, Sun DA, Sloan S (2006) A simple hypoplastic model for normally consolidated clay. Acta Geotechnica 1(1):15–27

    Article  Google Scholar 

  19. Jáky J (1948) Pressures in silos. In: Proceedings of the 2nd international conference soil mechanics, Rotterdam, vol 1, pp 103–107

  20. Kirkgard MM, Lade PV (1993) Anisotropic three-dimensional behaviour of a normally consolidated clay. Can Geotech J 30:848–858

    Article  Google Scholar 

  21. Kolymbas D (1991) Computer-aided design of constitutive laws. Int J Numer Anal Methods Geomech 15:593–604

    Article  MATH  Google Scholar 

  22. Kolymbas D, Herle I (2003) Shear and objective stress rates in hypoplasticity. Int J Numer Anal Methods Geomech 27:733–744

    Article  MATH  Google Scholar 

  23. Matsuoka H, Nakai T (1974) Stress–deformation and strength characteristics of soil under three different principal stresses. In: Proceedings of the Japanese society of civil engineers, vol 232, pp 59–70

  24. Mašín D (2005) A hypoplastic constitutive model for clays. Int J Numer Anal Methods Geomech 29(4):311–336

    Article  MATH  Google Scholar 

  25. Mašín D (2007) A hypoplastic constitutive model for clays with meta-stable structure. Can Geotech J 44(3):363–375

    Article  Google Scholar 

  26. Mašín D (2009) 3D modelling of a NATM tunnel in high K 0 clay using two different constitutive models. J Geotech Geoenviron Eng ASCE 135(9):1326–1335

    Article  Google Scholar 

  27. Mašín D (2009) Comparison of predictive capabilities of selected elasto-plastic and hypoplastic models for structured clays. Soils Found 49(3):381–390

    Article  MathSciNet  Google Scholar 

  28. Mašín D (2010) Predicting the dependency of a degree of saturation on void ratio and suction using effective stress principle for unsaturated soils. Int J Numer Anal Methods Geomech 34:73–90

    MATH  Google Scholar 

  29. Mašín D (2012) Asymptotic behaviour of granular materials. Granul Matter 14(6):759–774

    Google Scholar 

  30. Mašín D (2012) Hypoplastic Cam-clay model. Géotechnique 62(6):549–553

    Article  Google Scholar 

  31. Mašín D, Boháč J, Tůma P (2011) Modelling of a deep excavation in a silty clay. In: Proceedings of the 15th European conference on soil mechanics and geotechnical engineering, vol 3, pp 1509–1514

  32. Mašín D, Herle I (2005) State boundary surface of a hypoplastic model for clays. Comput Geotech 32(6):400–410

    Article  Google Scholar 

  33. Mašín D, Herle I (2007) Improvement of a hypoplastic model to predict clay behaviour under undrained conditions. Acta Geotechnica 2(4):261–268

    Article  Google Scholar 

  34. Mašín D, Khalili N (2008) A hypoplastic model for mechanical response of unsaturated soils. Int J Numer Anal Methods Geomech 32(15):1903–1926

    Article  MATH  Google Scholar 

  35. Mašín D, Khalili N (2012) A thermo-mechanical model for variably saturated soils based on hypoplasticity. Int J Numer Anal Methods Geomech 36(12):1461–1485

    Google Scholar 

  36. Mašín D, Tamagnini C, Viggiani G, Costanzo D (2006) Directional response of a reconstituted fine grained soil. Part II: performance of different constitutive models. Int J Numer Anal Methods Geomech 30(13):1303–1336

    Article  MATH  Google Scholar 

  37. Miča L, Chalmovský J, Fiala R, Račandský V (2012) Numerical analysis of retaining structures of excavations (in Czech). Akademické nakladatelství CERM, Brno, Czech Republic, ISBN 978-80-7204-773-4, 142 pp

  38. Najser J, Mašín D, Boháč J (2012) Numerical modelling of lumpy clay landfill. Int J Numer Anal Methods Geomech 36(1):17–35

    Article  Google Scholar 

  39. Niemunis A (2003) Extended hypoplastic models for soils. Habilitation thesis, Ruhr-University, Bochum

  40. Niemunis A, Grandas Tavera CE, Prada Sarmiento LF (2009) Anisotropic visco-hypoplasticity. Acta Geotechnica 4(4):293–314

    Article  Google Scholar 

  41. Niemunis A, Herle I (1997) Hypoplastic model for cohesionless soils with elastic strain range. Mech Cohesive Frict Mater 2:279–299

    Article  Google Scholar 

  42. Niemunis A, Prada Sarmiento LF, Grandas Tavera CE (2011) Extended paraelasticity and its application to a boundary value problem. Acta Geotechnica 6:91–92

    Google Scholar 

  43. Niemunis A, Prada Sarmiento LF, Grandas Tavera CE (2011) Paraelasticity. Acta Geotechnica 6:67–80

    Article  Google Scholar 

  44. Niemunis A, Wichtmann T, Triantafyllidis T (2005) A high-cycle accumulation model for sand. Comput Geotech 32:245–263

    Article  Google Scholar 

  45. Parry RHG (1960) Triaxial compression and extension tests on remoulded saturated clay. Géotechnique 10:166–180

    Article  Google Scholar 

  46. Roscoe KH, Burland JB (1968) On the generalised stress-strain behaviour of wet clay. In: Heyman J, Leckie FA (eds) Engineering plasticity. Cambridge University Press, Cambridge, pp 535–609

    Google Scholar 

  47. Svoboda T, Mašín D (2011) Comparison of displacement fields predicted by 2D and 3D finite element modelling of shallow NATM tunnels in clays. Geotechnik 34(2):115–126

    Article  Google Scholar 

  48. Svoboda T, Mašín D, Boháč J (2010) Class A predictions of a NATM tunnel in stiff clay. Comput Geotech 37(6):817–825

    Article  Google Scholar 

  49. Weifner T, Kolymbas D (2007) A hypoplastic model for clay and sand. Acta Geotechnica 2(2):103–112

    Article  Google Scholar 

  50. Weifner T, Kolymbas D (2008) Review of two hypoplastic equations for clay considering axisymmetric element deformations. Comput Geotech 35:760–774

    Article  Google Scholar 

  51. von Wolffersdorff PA (1996) A hypoplastic relation for granular materials with a predefined limit state surface. Mech Cohesive Frict Mater 1:251–271

    Article  Google Scholar 

  52. Wood DM (1974) Some aspects of the mechanical behaviour of kaolin under truly triaxial conditions of stress and strain. Ph.D. thesis, University of Cambridge

  53. Wu W, Bauer E (1994) A simple hypoplastic constitutive model for sand. Int J Numer Anal Methods Geomech 18:833–862

    Article  MATH  Google Scholar 

  54. Youwai S, Chattanjai P, Jongpradist P, Kongkitkul W (2010) Hypoplastic model for simulation of deformation characteristics of bangkok soft clay with different stress paths. ASCE Geotechnical Special Publication 200 GSP, pp 160–165

Download references

Acknowledgments

Financial support by the research grants GACR P105/12/1705, GACR P105/11/1884, TACR TA01031840 and MSM 0021620855 is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Mašín.

Appendix

Appendix

Complete formulation of the proposed hypoplastic model. The general rate formulation reads

$$ \mathop{{\bf T}}\limits^{\circ}=f_s{\varvec{\mathcal L}}:{\bf D}-\frac{f_d}{f_d^A}\varvec{\mathcal A}:\varvec{d}\|{\bf D}\| $$
(43)

with

$$ \varvec{\mathcal L}=\varvec{\mathcal I}+\frac{\nu}{1-2\nu}{\bf 1}\otimes{\bf 1} $$
(44)
$$ \varvec{\mathcal A}=f_s{\varvec{\mathcal L}}+\frac{{\bf T}}{\lambda^*}\otimes{\bf 1} $$
(45)
$$ f_s=\frac{3p}{2}\left(\frac{1}{\lambda^*}+ \frac{1}{\kappa^*}\right)\frac{1-2\nu}{1+\nu} $$
(46)

where ν, λ* and κ* the are model parameters, p =  − tr T/3, and \(\varvec{1}\) and \({\varvec{\mathcal I}}\) are the second- and fourth order unity tensors, respectively. The factor f d reads

$$ f_d=\left(\frac{2p}{p_e}\right)^\alpha $$
(47)

with α = 2 and the equivalent pressure

$$ p_e=p_r\exp\left[\frac{N-\ln(1+e)}{\lambda^*}\right] $$
(48)

where N is a parameter and p r is a reference stress equal to 1 kPa. The factor \( f_d^A\) reads

$$ f_d^A=2^\alpha(1-F_m)^{\alpha/\omega} $$
(49)

where F m is the Matsuoka--Nakai factor calculated from

$$ F_m=\frac{9I_3+I_1I_2}{I_3+I_1I_2} $$
(50)

and the exponent ω reads

$$ \omega=-\frac{\ln\left(\cos^2\varphi_c\right)}{\ln 2}+a\left(F_m-\sin^2\varphi_c\right) $$
(51)

where \(\varphi_c\) is a parameter and a = 0.3. The stress invariants I 1, I 2 and I 3 are given by

$$ I_1={\rm tr}{\bf T} $$
(52)
$$ I_2=\frac{1}{2}\left[{\bf T}:{\bf T}-\left(I_1\right)^2\right] $$
(53)
$$ I_3={\rm det}{\bf T} $$
(54)

Finally, the asymptotic strain rate direction \(\varvec{d}\) is calculated as

$$ \varvec{d}=\frac{\varvec{d}^A}{\|\varvec{d}^A\|} $$
(55)

where

$$ \begin{aligned}{\varvec d}^A&=-\hat{{\bf T}}^*+\\ &\varvec{1}\left[\frac{2}{3}-\frac{\cos 3\theta+1}{4}F_m^{1/4}\right] \frac{F_m^{\xi/2}-\sin^\xi\varphi_c}{1-\sin^\xi\varphi_c} \end{aligned} $$
(56)

with the Lode angle θ

$$ \cos3\theta=-\sqrt{6}\frac{{\rm tr}\left(\hat{{\bf T}}^\ast\cdot \hat{{\bf T}}^\ast\cdot\hat{{\bf T}}^\ast\right)}{\left[\hat{{\bf T}}^\ast: \hat{{\bf T}}^\ast\right]^{3/2}} $$
(57)

exponent ξ

$$ \xi=1.7+3.9\sin^2\varphi_c $$
(58)

and the stress measure \(\hat{{\bf T}}^\ast={\bf T}/\hbox{tr}{\bf T}-\varvec{{\bf 1}}/3\). The model requires five parameters \(\varphi_c, \lambda^*, \kappa^*, N\) and ν, and state variables T and void ratio e.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mašín, D. Clay hypoplasticity with explicitly defined asymptotic states. Acta Geotech. 8, 481–496 (2013). https://doi.org/10.1007/s11440-012-0199-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-012-0199-y

Keywords

Navigation