Skip to main content
Log in

Numerical analysis of seepage–deformation in unsaturated soils

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

A coupled elastic–plastic finite element analysis based on simplified consolidation theory for unsaturated soils is used to investigate the coupling processes of water infiltration and deformation. By introducing a reduced suction and an elastic–plastic constitutive equation for the soil skeleton, the simplified consolidation theory for unsaturated soils is incorporated into an in-house finite element code. Using the proposed numerical method, the generation of pore water pressure and development of deformation can be simulated under evaporation or rainfall infiltration conditions. Through a parametric study and comparison with the test results, the proposed method is found to describe well the characteristics during water evaporation/infiltration into unsaturated soils. Finally, an unsaturated soil slope with water infiltration is analyzed in detail to investigate the development of the displacement and generation of pore water pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alonso EE, Gens A, Delahaye CH (2003) Influence of rainfall on the deformation and stability of a slope in overconsolidated clays: a case study. Hydrogeol J 11:174–192

    Article  Google Scholar 

  2. Basha HA (1999) Multidimensional linearized non-steady infiltration with prescribed boundary conditions at the soil surface. Water Resour Res 35(1):75–83

    Article  Google Scholar 

  3. Basha HA (2000) Multidimensional linearized non-steady infiltration toward a shallow water table. Water Resour Res 36(9):2567–2573

    Article  Google Scholar 

  4. Bathurst RJ, Ho AF, Siemens G (2007) A column apparatus for investigation of 1-D unsaturated-saturated response of sand–geotextile system. Geotech Test J 30(6):1–9

    Google Scholar 

  5. Bishop AW (1955) The principal of effective stress. Teknsik Ukebl 106:859–863

    Google Scholar 

  6. Borja RI, Liu X, White JA (2012) Multiphysics hillslope processes triggering landslides. Acta Geotech 7:261–269

    Article  Google Scholar 

  7. Borja RI, White JA, Liu X, Wu W (2012) Factor of safety in a partially saturated slope inferred from hydro-mechanical continuum modeling. Int J Numer Anal Meth Geomech 36(2):236–248

    Article  Google Scholar 

  8. Borja RI, Song X, Wu W (2013) Cam-clay plasticity, Part VII: triggering a shear band in variably saturated porous media. Comput Methods Appl Mech Eng 261–262:66–82

    Article  Google Scholar 

  9. Brooks RH, Corey AT (1964) Hydraulic properties of porous medium. Hydrology Paper No.3, Civil Engineering Department, Colorado State University, Fort Collins, Co

  10. Cai F, Ugai K (2004) Numerical analysis of rainfall effects on slope stability. Int J Geomech 4(2):69–78

    Article  Google Scholar 

  11. Chen JM, Tan YC, Chen CH (2001) Multidimensional infiltration with arbitrary surface fluxes. J Irrig Drain Eng 127(6):370–377

    Article  MathSciNet  Google Scholar 

  12. Cho SE, Lee SR (2001) Instability of unsaturated soil slopes due to infiltration. Comput Geotech 28:185–208

    Article  Google Scholar 

  13. Conte E (2004) Consolidation analysis for unsaturated soils. Can Geotech J 41:599–612

    Article  Google Scholar 

  14. Deng G, Shen ZJ (2006) Numerical simulation of crack formation process in clays during drying and wetting. Geomech Geoeng Int J 1(1):27–41

    Article  Google Scholar 

  15. Ehlers W, Graf T, Ammann M (2004) Deformation and localization analysis of partially saturated soil. Comput Methods Appl Mech Eng 193:2885–2910

    Article  MATH  Google Scholar 

  16. Fredlund DG (2006) Unsaturated soil mechanics in engineering practice. J Geotech Geoenviron Eng 132(3):286–321

    Article  Google Scholar 

  17. Garcia E, Oka F, Kimoto S (2011) Numerical analysis of a one-dimensional infiltration problem in unsaturated soil by a seepage-deformation coupled method. Int J Numer Anal Meth Geomech 35(5):544–568

    Article  MATH  Google Scholar 

  18. Griffiths DV, Lu N (2005) Unsaturated slope stability analysis with steady infiltration or evaporation using elasto-plastic finite elements. Int J Numer Anal Meth Geomech 29:249–267

    Article  MATH  Google Scholar 

  19. Hilf JW (1948) Estimating construction pore pressures in rolled earth dams. In: Proceedings of 2nd international conference on soil mechanics and foundation engineering, Rotterdam, The Netherlands, vol 3, pp 234–240

  20. Khalili N, Valliappan S, Wan CF (1999) Consolidation of fissured clays. Geotechnique 49:75–89

    Article  Google Scholar 

  21. Lewis RW, Schrefler BA (1987) The finite element method in the deformation and consolidation of porous media. Wiley, New York

    Google Scholar 

  22. Le TMH, Gallipoli D, Sánchez M, Wheeler SJ (2012) Stochastic analysis of unsaturated seepage through randomly heterogeneous earth embankments. Int J Numer Anal Method Geomech 36:1056–1076

    Article  Google Scholar 

  23. Liakopoulos A (1964). Transient flow through unsaturated porous media. Ph.D. thesis, University of California at Berkeley

  24. Liu EL, Xing HL (2009) A double hardening thermo-mechanical constitutive model for overconsolidated clays. Acta Geotech 4:1–6

    Article  MATH  Google Scholar 

  25. Morel-Seytoux HJ (1978) Derivation of equations for variable rainfall infiltration. Water Resour Res 14(4):561–568

    Article  Google Scholar 

  26. Morel-Seytoux HJ (1981) Analytical results for prediction of variable rainfall infiltration. J Hydrol 59:209–230

    Article  Google Scholar 

  27. Nezhad MM, Javadi AA, Al-Tabbaa A, Abbasi F (2013) Numerical study of soil heterogeneity effects on contaminant transport in unsaturated soil (model development and validation). Int J Numer Anal Method Geomech 37:278–298

    Article  Google Scholar 

  28. Rahardjo H, Lee TT, Leong EC, Rezaur RB (2005) Response of a residual soil slope to rainfall. Can Geotech Eng 42:340–351

    Article  Google Scholar 

  29. Qin A, Sun D, Tan Y (2010) Analytical solution to one-dimensional consolidation in unsaturated soils under loading varying exponentially with time. Comput Geotech 37:233–238

    Article  Google Scholar 

  30. Serrano SE (1990) Modeling infiltration in hysteretic soils. Adv Water Resour 13(1):12–23

    Article  Google Scholar 

  31. Shen ZJ (2003) Simplified consolidation theory for unsaturated soils and its application. Hydro-Sci Eng 4:1–6 (in Chinese with English abstract)

    Google Scholar 

  32. Song X, Borja RI (2014) Mathematical framework for unsaturated flow in the finite deformation range. Int J Numer Methods Eng 97:658–682

    Article  MathSciNet  Google Scholar 

  33. Stauffer F, Dracos T (1986) Experimental and numerical study of water and solute infiltration in layered porous media. J Hydrol Eng 84:9–34

    Article  Google Scholar 

  34. Sun W, Sun D (2012) Coupled modelling of hydro-mechanical behavior of unsaturated compacted expansive soils. Int J Numer Anal Method Geomech 36:1002–1022

    Article  Google Scholar 

  35. Wu LZ, Zhang LM (2009) Analytical solution to 1D coupled water infiltration and deformation in unsaturated soils. Int J Numer Anal Meth Geomech 33:773–790

    Article  MATH  Google Scholar 

  36. Yang H, Rahardjo H, Wibawa B, Leong EC (2004) A soil column apparatus for laboratory infiltration study. Geotech Test J 27(4):1–9

    MATH  Google Scholar 

  37. Yang H, Rahardjo H, Leong EC (2006) Behavior of unsaturated layered soil columns during infiltration. J Hydrol Eng 11(4):329–337

    Article  Google Scholar 

  38. Zhan LT, Ng CWW (2004) Analytical analysis of rainfall infiltration mechanism in unsaturated soils. Int J Geomech 4:273–284

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Professor Ronaldo I. Borja of Stanford University and the anonymous reviewers for their careful review, contributions and critics, which led to the improvement of the article. This work was funded by International Science & Technology Cooperation Program of China (Grant No. 2012DFA60760) and the Fundamental Research Funds for the Central Universities (Granted No. 2013G1502009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enlong Liu.

Appendices

Appendix 1

From the simplified phase diagrams (see Fig. 8) for an unsaturated soil, we have

$$ V_{\text{v}} = V_{\text{a}} + V_{\text{w}} ,\quad {\text{and}}\quad V = V_{\text{a}} + V_{\text{w}} + V_{\text{s}} = 1, $$
$$ S_{\text{r}} = V_{\text{w}} /V_{\text{v}} ,\quad n = V_{\text{v}} /V, $$

so we obtain V a = V v − V w. However, for the unsaturated soils, some air is embedded in the water, which can be formulated by the simplified method as V a′ = c h V w, so the total air content of a unit volume of unsaturated soil element can be obtained:

$$ V_{\text{a}} + \, V\prime_{\text{a}} = \, V_{\text{v}} - \, V_{\text{w}} + \, c_{\text{h}} V_{\text{w}} = nV\left[ {1 - \, S_{\text{r}} + c_{\text{h}} S_{\text{r}} } \right] = \left[ {1 - \, S_{\text{r}} + c_{\text{h}} S_{\text{r}} } \right]n. $$

We define n a = [1 − S r + c h S r]n = [1 − (1 − c h)S r]n, where n is the ratio of the pore air of a unit soil element, which signifies the air content in the voids of a soil element within unit volume.

Fig. 8
figure 8

Simplified three phase diagram

Appendix 2

For a unit volume soil element, the pore air pressure u a will be generated upon loading. Under the conditions that the air in the voids cannot be discharged, from Boyle’s law, we have

$$ \left( {p_{\text{a}} + u_{\text{a}} } \right)\left( {V_{\text{a}} + c_{\text{h}} V_{\text{w}} } \right) = \left( {p_{\text{a}} + u_{\text{a0}} } \right)\left( {V_{\text{a0}} + c_{\text{h}} V_{\text{w0}} } \right), $$
(34)

in which p a is the atmospheric pressure, u a is the pore air pressure, V a0 is the initial content of pore air of a unit volume soil element (the corresponding pore air pressure u a0 = 0), and V a is the content of pore air of a unit volume soil element. For a unit volume soil element (see Fig. 8), we have V w = nS r and V a = n(1 − S r). Combining equation (4), n a = [1 − (1 − c h)S r]n, and Eq. (34), we have

$$ \left( {p_{\text{a}} + u_{\text{a}} } \right)n_{\text{a}} = \left( {p_{\text{a}} + u_{\text{a0}} } \right)n_{\text{a0}} , $$
(35)

in which n a0 is the initial ratio of pore air of a unit soil element, n a0 = [1 − (1 − c h)S r0]n 0, S r0 is initial degree of saturation, and n 0 is initial porosity.

Because the initial air pressure is equal to the atmospheric pressure (u a0 = 0), from Eq. (35), we have:

$$ u_{\text{a}} = \left( {\frac{{n_{\text{a0}} }}{{n_{\text{a}} }} - 1} \right)p_{\text{a}} . $$
(36)

Appendix 3

In the following, we ignore the flow of the dissolved air in the pore water, the vapor in the pore air, and the influence of temperature. For a unit volume soil element, the mass of pore air discharged per unit time has the following equation (mass conservation equation):

$$ \frac{\partial }{\partial t}\left[ {\rho_{\text{a}} \left( {1 - S_{\text{r}} } \right)n + \rho_{\text{a}} c_{\text{h}} S_{\text{r}} n} \right] = \frac{\partial }{\partial t}\left[ {\rho_{\text{a}} n_{\text{a}} } \right] = \frac{{{\text{d}}q_{\text{a}} }}{{{\text{d}}t}}, $$
(37)

in which q a is the mass of pore air discharged within a unit soil element. From Eq. (34), we can deduce the following equation in incremental form:

$$ \Delta \rho_{\text{a}} \cdot n_{\text{a}} + \rho_{\text{a}} \cdot\Delta n_{\text{a}} =\Delta q_{\text{a}} . $$
(38)

Differentiating equation (5), ρ a = ρ a0(1 + u a/p a),  we have

$$ {{\Delta }}\rho_{E} = \rho_{\text{a0}} \cdot {{\Delta }}u_{\text{a}} /p_{\text{a}} . $$
(39)

From Eq. (7), we have

$$ {{\Delta }}q_{\text{a}} = \xi \cdot \rho_{\text{a}} \cdot {{\Delta }}n_{\text{a}} , $$
(40)

Substituting Eqs. (39) and (40) into Eq. (38), we obtain

$$ n_{\text{a}} \cdot \rho_{\text{a0}} \cdot {{\Delta }}u_{\text{a}} /p_{\text{a}} + \rho_{\text{a}} \cdot {{\Delta }}n_{\text{a}} = \xi \cdot \rho_{\text{a}} \cdot {{\Delta }}n_{\text{a}} , $$
(41)

Substituting Eq. (5), ρ a = ρ a0(1 + u a/p a), into Eq. (41), we have

$$ {{\Delta }}u_{\text{a}} = - \frac{{p_{\text{a}} + u_{\text{a}} }}{{n_{\text{a}} }}\left( {1 - \xi } \right){{\Delta }}n_{\text{a}} . $$
(42)

Appendix 4

The Eq. (8) can be expressed as:

$$ \frac{{du_{\text{a}} }}{{p_{\text{a}} + u_{\text{a}} }} = - \frac{1 - \xi }{{n_{\text{a}} }}{\text{d}}n_{\text{a}} , $$
(43)

Integrating the above equation, we obtain the following:

$$ { \ln }\left( {p_{\text{a}} + u_{\text{a}} } \right) = - \left( {1 - \xi } \right){ \ln }\left( {n_{\text{a}} } \right) + {\text{const}} ., $$
(44)

Substituting the initial conditions n a0 and u a0 into Eq. (44), we have

$$ {\text{const}} . {\text{ = ln}}\left[ {\left( {p_{a} + u_{a0} } \right)n_{a0}^{{\left( {1 - \xi } \right)}} } \right], $$
(45)

Combining Eqs. (44) and (45), we have

$$ u_{\text{a}} = \left[ {\left( {\frac{{n_{\text{a0}} }}{{n_{\text{a}} }}} \right)^{{\left( {1 - \xi } \right)}} - 1} \right]p_{\text{a}} . $$
(46)

Appendix 5

The elements of the coefficient matrix in the finite element Eq. (33) are as follows:

$$ k_{ij}^{11} = \int {\left[ {\left( {d_{11} + A_{2} } \right)\frac{{\partial N_{i} }}{\partial x}\frac{{\partial N_{j} }}{\partial x} + d_{44} \frac{{\partial N_{i} }}{\partial z}\frac{{\partial N_{j} }}{\partial z} + d_{14} \left( {\frac{{\partial N_{i} }}{\partial x}\frac{{\partial N_{j} }}{\partial z} + \frac{{\partial N_{j} }}{\partial x}\frac{{\partial N_{i} }}{\partial z}} \right)} \right]} \;{\text{d}}x{\text{d}}z, $$
(47)
$$ k_{ij}^{12} = \int {\left[ {\left( {d_{12} + A_{2} } \right)\frac{{\partial N_{i} }}{\partial x}\frac{{\partial N_{j} }}{\partial z} + d_{14} \frac{{\partial N_{i} }}{\partial x}\frac{{\partial N_{j} }}{\partial x} + d_{24} \frac{{\partial N_{i} }}{\partial z}\frac{{\partial N_{j} }}{\partial z} + d_{44} \frac{{\partial N_{j} }}{\partial x}\frac{{\partial N_{i} }}{\partial z}} \right]\;} {\text{d}}x{\text{d}}z, $$
(48)
$$ k_{ij}^{21} = \int {\left[ {\left( {d_{12} + A_{2} } \right)\frac{{\partial N_{i} }}{\partial z}\frac{{\partial N_{j} }}{\partial x} + d_{14} \frac{{\partial N_{i} }}{\partial x}\frac{{\partial N_{j} }}{\partial x} + d_{24} \frac{{\partial N_{i} }}{\partial z}\frac{{\partial N_{j} }}{\partial z} + d_{44} \frac{{\partial N_{i} }}{\partial x}\frac{{\partial N_{j} }}{\partial z}} \right]} \;{\text{d}}x{\text{d}}z, $$
(49)
$$ k_{ij}^{22} = \int {\left[ {\left( {d_{22} + A_{2} } \right)\frac{{\partial N_{i} }}{\partial z}\frac{{\partial N_{j} }}{\partial z} + d_{44} \frac{{\partial N_{i} }}{\partial x}\frac{{\partial N_{j} }}{\partial x} + d_{24} \left( {\frac{{\partial N_{i} }}{\partial z}\frac{{\partial N_{j} }}{\partial x} + \frac{{\partial N_{j} }}{\partial z}\frac{{\partial N_{i} }}{\partial x}} \right)} \right]} {\text{d}}x{\text{d}}z, $$
(50)
$$ k_{ij}^{33} = - \int {\left[ {k_{x} \frac{{\partial N_{i} }}{\partial x}\frac{{\partial N_{j} }}{\partial x} + k_{z} \frac{{\partial N_{i} }}{\partial z}\frac{{\partial N_{j} }}{\partial z}} \right]} \;{\text{d}}x{\text{d}}z, $$
(51)
$$ k_{ij}^{13} = - \rho_{\text{w}} g\int {A_{1} } \frac{{\partial \bar{N}_{i} }}{\partial r}\bar{N}_{j} d{\text{d}}z, $$
(52)
$$ k_{ij}^{23} = - \rho_{\text{w}} g\int {A_{1} \frac{{\partial \bar{N}_{i} }}{\partial z}\bar{N}_{j} {\text{d}}x{\text{d}}z} , $$
(53)
$$ k_{ij}^{31} = - \rho_{\text{w}} g\int {S_{\text{r}} } \frac{{\partial \bar{N}_{j} }}{\partial x}\bar{N}_{i} {\text{d}}x{\text{d}}z, $$
(54)
$$ k_{ij}^{32} = - \rho_{\text{w}} g\int {S_{\text{r}} } \frac{{\partial \bar{N}_{j} }}{\partial z}\bar{N}_{i} {\text{d}}x{\text{d}}z, $$
(55)
$$ s_{ij}^{{}} = - \rho_{\text{w}} g\int {c_{\text{s}} N_{i} N_{j} } {\text{d}}x{\text{d}}z, $$
(56)

where c s = μn/S r

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, E., Yu, HS., Deng, G. et al. Numerical analysis of seepage–deformation in unsaturated soils. Acta Geotech. 9, 1045–1058 (2014). https://doi.org/10.1007/s11440-014-0343-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-014-0343-y

Keywords

Navigation