Skip to main content
Log in

From micron-sized needle-shaped hydrates to meter-sized shotcrete tunnel shells: micromechanical upscaling of stiffness and strength of hydrating shotcrete

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Knowledge on the stresses in shotcrete tunnel shells is of great importance, as to assess their safety against severe cracking or failure. Estimation of these stresses from 3D optical displacement measurements requires shotcrete material models, which may preferentially consider variations in the water–cement and aggregate–cement ratios. Therefore, we employ two representative volume elements within a continuum micromechanics framework: the first one relates to cement paste (with a spherical material phase representing cement clinker grains, needle-shaped hydrate phases with isotropically distributed spatial orientations, a spherical water phase, and a spherical air phase; all being in mutual contact), and the second one relates to shotcrete (with phases representing cement paste and aggregates, whereby aggregate inclusions are embedded into a matrix made up by cement paste). Elasticity homogenization follows self-consistent schemes (at the cement paste level) and Mori–Tanaka estimates (at the shotcrete level), and stress peaks in the hydrates related to quasi-brittle material failure are estimated by second-order phase averages derived from the RVE-related elastic energy. The latter permits upscaling from the hydrate strength to the shotcrete strength. Experimental data from resonant frequency tests, ultrasonics tests, adiabatic tests, uniaxial compression tests, and nanoindentation tests suggest that shotcrete elasticity and strength can be reasonably predicted from mixture- and hydration-independent elastic properties of aggregates, clinker, hydrates, water, and air, and from strength properties of hydrates. At the structural level, the micromechanics model, when combined with 3D displacement measurements, predicts that a decrease of the water–cement ratio increases the safety of the shotcrete tunnel shell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Notably, when model predictions are compared to strength values stemming from uniaxial compression tests carried out on cylindrical specimens (with a diameter-to-height ratio of one half), σ devcrit is to be divided by 1.2, which is the standardly recommended ratio between cube-strength and cylinder-strength [39, 81, 82].

  2. Pillar [62] performed uniaxial compression tests on cylindrical specimens with a diameter-to-height ratio of one half. Accordingly, σ devcrit = 26/1.2 =  21.67 MPa is used in (35), where 1.2 is the standard recommended ratio between cube-strength and cylinder-strength [39, 81, 82]; see also footnote in Sect. 3.2.

References

  1. Acker P (2001) Micromechanical analysis of creep and shrinkage mechanisms. In: Ulm F-J, Bažant Z, Wittmann F (eds) Creep, shrinkage and durability mechanics of concrete and other quasi-brittle materials, 6th international conference CONCREEP@MIT. Amsterdam, Elsevier, pp 15–26

    Google Scholar 

  2. Acker P, Ulm F-J (2001) Creep and shrinkage of concrete: physical origins and practical measurements. Nucl Eng Des 203(2/3):143–158

    Article  Google Scholar 

  3. Baroghel-Bouny V (1994) Caractérisation des pâtes de ciment et des bétons—méthodes, analyse, interprétation [Characterization of cement pastes and concretes—methods, analysis, interpretations] (in French). Technical report, Laboratoire Central des Ponts et Chaussées, Paris, France

  4. Barthélémy J-F, Dormieux L (2003) Détermination du critère de rupture macroscopique d’un milieu poreux par homogénéisation non linèaire [Determination of the macroscopic strength criterion of a porous medium by nonlinear homogenization] (In French). C R Mec 331(4):271–276

    Article  MATH  Google Scholar 

  5. Benveniste Y (1987) A new approach to the application of Mori–Tanaka’s theory in composite materials. Mech Mater 6(2):147–157

    Article  MathSciNet  Google Scholar 

  6. Bernard O, Ulm F-J, Lemarchand E (2003) A multiscale micromechanics-hydration model for the early-age elastic properties of cement-based materials. Cem Concr Res 33(9):1293–1309

    Article  Google Scholar 

  7. Boumiz A, Vernet C, Cohen-Tenoudji F (1996) Mechanical properties of cement pastes and mortars at early ages. Adv Cem Based Mat 3(3/4):94–106

    Google Scholar 

  8. Brandtner P, Moritz B, Schubert P (2007) On the challenge of evaluating stress in a shotcrete lining: experiences gained in applying the hybrid analysis method. Felsbau 25(5):93–98

    Google Scholar 

  9. Byfors J (1980) Plain concrete at early ages. Technical report, Swedish Cement and Concrete Research Institute, Stockholm, Sweden

  10. Celestino T, de Mariano M, Ferreira A, Guimaraes M (1997) Undercoring technique for stress measurement in shotcrete linings. In: Golser J, Hinkel W, Schubert W (eds) Tunnels for people, proceedings of the world tunnel congress 1997, Vienna, Austria. Balkema, Rotterdam, pp 59–64

    Google Scholar 

  11. Constantinides G, Ulm F-J (2004) The effect of two types of C-S-H on the elasticity of cement-based materials: Results from nanoindentation and micromechanical modeling. Cem Concr Res 34(1):67–80

    Article  Google Scholar 

  12. Cowin S, Mehrabadi M (1992) The structure of the linear anisotropic elastic symmetries. J Mech Phys Solids 40(7):1459–1471

    Article  MATH  MathSciNet  Google Scholar 

  13. Dormieux L, Kondo D, Ulm F-J (2006) Microporomechanics. Wiley, New York

    MATH  Google Scholar 

  14. Dormieux L, Molinari A, Kondo D (2002) Micromechanical approach to the behavior of poroelastic materials. J Mech Phys Solids 50(10):2203–2231

    Article  MATH  Google Scholar 

  15. Dormieux L, Sanahuja J, Maalej Y (2007) Résistance d’un polycristal avec interfaces intergranulaires imparfaites [Strength of a polycrystal with imperfect intergranular interfaces] (in French). C R Mec 335(1):25–31

    MATH  Google Scholar 

  16. Drugan W, Willis J (1996) A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites. J Mech Phys Solids 44(4):497–524

    Article  MATH  MathSciNet  Google Scholar 

  17. Eshelby J (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc Lond A 241:376–396. Reprinted in: Markenscoff X, Gupta A (eds) (2006) Collected works of J. D. Eshelby—the mechanics of defects and inhomogeneities, vol 133 of solid mechanics and its applications. Springer, Berlin

    MATH  MathSciNet  Google Scholar 

  18. Fedorov F (1968) Theory of elastic waves in crystals. Plenum Press, New York

    Google Scholar 

  19. Fritsch A, Dormieux L, Hellmich C (2006) Porous polycrystals built up by uniformly and axisymmetrically oriented needles: homogenization of elastic properties. C R Mec 334(3):151–157

    MATH  Google Scholar 

  20. Fritsch A, Dormieux L, Hellmich C, Sanahuja J (2007) Micromechanics of crystal interfaces in polycrystalline solid phases of porous media: fundamentals and application to strength of hydroxyapatite biomaterials. J Mater Sci 42(21):8824–8837

    Article  Google Scholar 

  21. Fritsch A, Hellmich C (2007) Universal microstructural patterns in cortical and trabecular, extracellular and extravascular bone materials: micromechanics-based prediction of anisotropic elasticity. J Theor Biol 244(4):597–620

    Article  Google Scholar 

  22. Hashin Z (1983) Analysis of composite materials—a survey. J Appl Mech 50(3):481–505

    Article  MATH  Google Scholar 

  23. Helbig K (1994) Foundations of anisotropy for exploration seismics. Pergamon, New York

    Google Scholar 

  24. Hellmich C (1999) Shotcrete as part of the new Austrian tunneling method: from thermochemomechanical material modeling to structural analysis and safety assessment of tunnels. PhD Thesis, Vienna University of Technology, Vienna, Austria

  25. Hellmich C, Barthélémy J-F, Dormieux L (2004) Mineral-collagen interactions in elasticity of bone ultrastructure - a continuum micromechanics approach. Eur J Mech A Solids 23(5):783–810

    Article  MATH  Google Scholar 

  26. Hellmich C, Macht J, Mang H (1999) Ein hybrides Verfahren zur Bestimmung der Auslastung von Spritzbetonschalen [A hybrid method for determination of the level of utilization of shotcrete shells] (in German). Felsbau 17(5):422–425

    Google Scholar 

  27. Hellmich C, Mang H (2005) Shotcrete elasticity revisited in the framework of continuum micromechanics: from submicron to meter level. J Mater Civil Eng (ASCE) 17(3):246–256

    Article  Google Scholar 

  28. Hellmich C, Mang H, Ulm F-J (2001) Hybrid method for quantification of stress states in shotcrete tunnel shells: combination of 3D in situ displacement measurements and thermochemoplastic material law. Comput Struct 79(22–25):2103–2115

    Article  Google Scholar 

  29. Hellmich C, Ulm F-J (2002) Micromechanical model for ultra-structural stiffness of mineralized tissues. J Eng Mech (ASCE) 128(8):898–908

    Article  Google Scholar 

  30. Hellmich C, Ulm F-J (2005) Drained and undrained poroelastic properties of healthy and pathological bone: a poro-micromechanical investigation. Transp Porous Media 58(3):243–268

    Article  Google Scholar 

  31. Hellmich C, Ulm F-J, Mang H (1999) Consistent linearization in Finite Element analysis of coupled chemo-thermal problems with exo- or endothermal reactions. Comput Mech 24(4):238–244

    Article  MATH  Google Scholar 

  32. Hellmich C, Ulm F-J, Mang H (1999) Multisurface chemoplasticity I: material model for shotcrete. J Eng Mech (ASCE) 125(6):692–701

    Article  Google Scholar 

  33. Helnwein P (2001) Some remarks on the compressed matrix representation of symmetric second-order and fourth-order tensors. Comput Methods Appl Mech Eng 190(22/23):2753–2770

    Article  MATH  MathSciNet  Google Scholar 

  34. Hershey A (1954) The elasticity of an isotropic aggregate of anisotropic cubic crystals. J Appl Mech (ASME) 21:226–240

    Google Scholar 

  35. Hill R (1963) Elastic properties of reinforced solids. J Mech Phys Solids 11(5):357–372

    Article  MATH  Google Scholar 

  36. Hill R (1967) The essential structure of constitutive laws for metal composites and polycrystals. J Mech Phys Solids 15(2):79–95

    Article  Google Scholar 

  37. Hofstetter G, Mang H (1995) Computational mechanics of reinforced concrete structures. Vieweg & Sohn Verlagsgesellschaft mbHm Braunschweig, Braunschweig

    MATH  Google Scholar 

  38. Hofstetter K, Hellmich C, Eberhardsteiner J (2005) Predicting wood strength from composition and microstructure: development and experimental verification of a continuum micromechanics model. In: Dormieux L, Kondo D, Sab K (eds) Colloque en l’honneur du Professor Jean-Louis Auriault: microstructure et propriétés des matériaux. Presses de l’Ecole Nationale des Ponts et Chaussées, pp 217–222

  39. Indelicato F, Paggi M (2008) Specimen shape and the problem of contact in the assessment of concrete compressive strength. Mater Struct 41(2):431–441

    Article  Google Scholar 

  40. Kreher W (1990) Residual stresses and stored elastic energy of composites and polycrystals. J Mech Phys Solids 38(1):115–128

    Article  MATH  Google Scholar 

  41. Kreher W, Molinari A (1993) Residual stresses in polycrystals as influenced by grain shape and texture. J Mech Phys Solids 41(12):1955–1977

    Article  MATH  Google Scholar 

  42. Kröner E (1958) Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls [Computation of the elastic constants of a polycrystal based on the constants of the single crystal] (in German). Z Phys A Hadrons Nucl 151(4):504–518

    Google Scholar 

  43. Lackner R, Macht J, Hellmich C, Mang H (2002) Hybrid method for analysis of segmented shotcrete tunnel linings. J Geotech Geoenviron Eng (ASCE) 128(4):298–308

    Article  Google Scholar 

  44. Lackner R, Macht J, Mang H (2006) Hybrid analysis method for on-line quantification of stress states in tunnel shells. Comput Methods Appl Mech Eng 195(41–43):5361–5378

    Article  MATH  Google Scholar 

  45. Lafarge (1997) Internal report, Lafarge Centre Technique Europe Central. Commissioned by the Institute for Strength of Materials, Vienna University of Technology, Austria

  46. Lafarge (2002) Internal report, Lafarge Centre Technique Europe Central. Commissioned by the Institute for Strength of Materials, Vienna University of Technology, Austria

  47. Laws N (1977) The determination of stress and strain concentrations at an ellipsoidal inclusion in an anisotropic material. J Elast 7(1):91–97

    MATH  MathSciNet  Google Scholar 

  48. Lechner M, Hellmich C, Mang H (2001) Short-term creep of shotcrete—thermochemoplastic material modelling and nonlinear analysis of a laboratory test and of a NATM excavation by the finite element method. In: Vermeer P, Diebels S, Ehlers W, Herrmann H, Luding S, Ramm E (eds) Proceedings of the international symposium on discontinuous modelling of cohesive-frictional materials—Lecture Notes in Physics. Springer, Berlin, pp 47–62

    Chapter  Google Scholar 

  49. Lemarchand E, Ulm F-J, Dormieux L (2002) Effect of inclusions on friction coefficient of highly filled composite materials. J Eng Mech (ASCE) 128(8):876–884

    Article  Google Scholar 

  50. Macht J, Hellmich C, Lackner R, Schubert W, Mang H (2000) Assessment of a support system for squeezing rock conditions by means of a hybrid method. Felsbau 18(6):9–15

    Google Scholar 

  51. Macht J, Lackner R, Hellmich C, Mang H (2001) Shotcrete creep properties – review of material tests and structural analyses of tunnels. In: Ulm F-J, Bažant Z, Wittmann F (eds) Proceedings of the 6th international conference on creep, shrinkage and durability mechanics of concrete and other quasi-brittle materials. Elsevier Science, Amsterdam, pp 285–300

    Google Scholar 

  52. Macht J, Lackner R, Hellmich C, Mang H (2003) Quantification of stress states in shotcrete shells. In: Beer G (ed) Numerical simulation in tunneling. Springer, Wien, pp 225–248, chapter 10

    Google Scholar 

  53. Mang H, Hofstetter G (2004) Festigkeitslehre [Strength of materials], 2nd edn. Springer, Wien

    Google Scholar 

  54. Mehlhorn G (1996) Der Ingenieurbau: Grundwissen–Werkstoffe, Elastizitätstheorie [Basic knowledge in civil engineering: materials and elasticity theory], vol 4 (in German). Ernst & Sohn, Berlin

    Google Scholar 

  55. Meschke G (1996) Consideration of aging of shotcrete in the context of a 3-D viscoplastic material model. Int J Numer Methods Eng 39(18):3123–3143

    Article  MATH  Google Scholar 

  56. Miehe C (2002) Strain-driven homogenization of inelastic microstructures and composites based on an incremental variational formulation. Int J Numer Methods Eng 55(11):1285–1322

    Article  MATH  MathSciNet  Google Scholar 

  57. Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurg 21:571–574

    Article  Google Scholar 

  58. Müller L (1978) Der Felsbau—Tunnelbau [Constructions in rock—tunnelling], vol 4. Springer, Stuttgart

    Google Scholar 

  59. Neville A (1981) Properties of concrete, 3rd edn. Pitman Publishing Limited, London

    Google Scholar 

  60. Pacher F (1964) Deformationsmessungen im Versuchsstollen als Mittel zur Erforschung des Gebirgsverhaltens und zur Bemessung des Ausbaus [Measurements of deformations in experimental tunnels to explore the behavior of rock and to design the lining] (in German). Felsmech Ingenieurgeol I:149–161

    Google Scholar 

  61. Pichler B, Hellmich C, Eberhardsteiner J (2008) Spherical and acicular representation of hydrates in a micromechanical model for cement paste—prediction of early-age elasticity and strength. Acta Mech (in press). doi:10.1007/s00707-008-0007-9

  62. Pillar N (2002) Determination of early age properties of fibre reinforced shotcrete to predict the cracking behavior. PhD Thesis, submitted at University of New South Wales, Private Communication, Sydney, Australia

  63. Rabcewicz L (1948) Patentschrift. Österreichisches Patent Nr. 165573 (patent specification, Austrian patent no. 165573) (in German)

  64. Rabcewicz L, Golser J, Hackl E (1972) Die Bedeutung der Messung im Hohlraumbau, Teil I [The significance of measurement in tunneling] (in German). Der Bauingenieur 47(7):225–234

    Google Scholar 

  65. Rokahr R, Lux K (1987) Einfluß des rheologischen Verhaltens des Spritzbetons auf den Ausbauwiderstand [Influence of the rheological behavior of shotcrete on the excavation resistance]. Felsbau 5:11–18

    Google Scholar 

  66. Rokahr R, Zachow R (1997) Ein neues Verfahren zur täglichen Kontrolle der Auslastung einer Spritzbetonschale [A new method for a daily monitoring of the stress intensity of a sprayed concrete lining] (in German). Felsbau 15(6):430–434

    Google Scholar 

  67. Sanahuja J (2008) Impact de la morphologie structurale sur les performances mécaniques des matériaux de construction: application au plâtre et à la pâte de ciment [Impact of the structural morphology on the mechanical performance of building materials: application to gypsum and to cement paste] (in French). PhD Thesis, Ecole Nationale des Ponts et Chaussées

  68. Sanahuja J, Dormieux L, Chanvillard G (2007) Modelling elasticity of a hydrating cement paste. Cem Concr Res 37(10):1427–1439

    Article  Google Scholar 

  69. Schubert P (1988) Beitrag zum rheologischen Verhalten von Spritzbeton [Contribution to the rheological behavior of shotcrete]. Felsbau 6:150–153

    Google Scholar 

  70. Schubert W, Steindorfer A (1996) Selective displacement monitoring during tunnel excavation. Felsbau 14(2):93–97

    Google Scholar 

  71. Schubert W, Steindorfer A, Button E (2002) Displacement monitoring in tunnels—an overview. Felsbau 20(2):7–15

    Google Scholar 

  72. Sercombe J, Hellmich C, Ulm F-J, Mang H (2000) Modeling of early-age creep of shotcrete I: model and model parameters. J Eng Mech (ASCE) 126(3):284–291

    Article  Google Scholar 

  73. Steindorfer A, Schubert W, Rabensteiner K (1995) Problemorientierte Auswertung geotechnischer Messungen [Advanced analysis of geotechnical displacement monitoring data new tools and examples of application] (in German). Felsbau 13(6):386–390

    Google Scholar 

  74. Stroud A (1971) Approximate calculation of multiple integrals. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  75. Sun Z, Ye G, Shah S (2005) Microstructure and early-age properties of portland cement paste effects of connectivity of solid phases. ACI Mater J 102(1):122–129

    Google Scholar 

  76. Suquet P (1987) Elements of homogenization for inelastic solid mechanics. In: Sanchez-Palencia E, Zaoui A (eds) Homogenization techniques for composite media, vol 272 of Lecture Notes in Physics. Springer, Berlin, pp 194–278, chapter 4

    Google Scholar 

  77. Suquet P (1997) Continuum micromechanics, vol 377 of CISM Courses and Lectures. Springer, Wien

    Google Scholar 

  78. Tritthart J, Häußler F (2003) Pore solution analysis of cement pastes and nanostructural investigations of hydrated C3S. Cem Concr Res 33(7):1063–1070

    Article  Google Scholar 

  79. Ulm F-J, Constantinides G, Heukamp F (2004) Is concrete a poromechanics material?—a multiscale investigation of poroelastic properties. Mater Struct/Mater Construct 37(1):43–58

    Google Scholar 

  80. Ulm F-J, Coussy O (1996) Strength growth as chemo-plastic hardening in early age concrete. J Eng Mech (ASCE) 122(12):1123–1132

    Article  Google Scholar 

  81. van Mier J (1984) Strain softening of concrete under multiaxial loading conditions. PhD Thesis, TH Eindhoven, Eindhoven, The Netherlands

  82. Wesche K (1974) Baustoffe für tragende Bauteile [Building materials for structural components], 3rd edn (in German). Bauverlag, Wiesbaden

    Google Scholar 

  83. Zaoui A (1997) Structural morphology and constitutive behavior of microheterogeneous materials. In: Suquet P (ed) Continuum micromechanics. Springer, Vienna, pp 291–347

    Google Scholar 

  84. Zaoui A (2002) Continuum micromechanics: survey. J Eng Mech (ASCE) 128(8):808–816

    Article  Google Scholar 

Download references

Acknowledgments

This work was part of the micromechanics-based activities within the integrated project “Technology Innovation in Underground Construction—TUNCONSTUCT” (http://www.tunconstruct.org), co-sponsored by the European Commission. The authors are indebted to Nora Pillar (Universidade Federal de Santa Catarina, Florianopolis, Brazil) for the communication of experimental results on shotcrete, to Wulf Schubert (Institute of Rock Mechanics and Tunnelling, Graz University of Technology, Austria) for providing measurement data of the Sieberg tunnel, to Markus Brandtner, Bernd Moritz, and Peter Schubert (IGT consulting engineers, Salzburg) for sharing their experience with the hybrid method in situ, and to Olga Río as well as to Luis Fernández-Luco (Institute of Construction Sciences Eduardo Torroja, High Council of Scientific Research, Madrid, Spain) for interesting discussions on the role of the accelerator in shotcrete technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Pichler.

Appendices

Appendix 1: list of symbols and abbreviations

a/c :

aggregate–cement ratio

\(\tilde{A}\) :

macroscopic chemical affinity

C-S-H:

abbreviation for calcium silicate hydrates

\(\underline{\underline{\underline{\underline C}}}\) :

fourth-order stiffness tensor

\(\underline{\underline{\underline{\underline C}}}_p\) :

stiffness tensor of material phase p

\(\underline{\underline{\underline{\underline C}}}_{\rm agg}\) :

stiffness tensor of aggregates

\(\underline{\underline{\underline{\underline C}}}_{\rm cp}\) :

stiffness tensor of cement paste

\(\underline{\underline{\underline{\underline C}}}_{\rm sc}\) :

stiffness tensor of shotcrete

C p,ijrs :

ijrs-th component of \(\underline{\underline{\underline{\underline C}}}_p\)

\(\underline{\underline{\underline{\underline C}}}_{\rm sc,aniso}\) :

anisotropic (transversely-isotropic) stiffness tensor of shotcrete

d :

characteristic length of inhomogeneities within the RVE

d cp :

characteristic length of inhomogeneities within the RVEcp of cement paste

d sc :

characteristic length of inhomogeneities within the RVEsc of shotcrete

dV :

infinitesimal volume element

\({{\mathcal{D}}}\) :

characteristic length of (tunnel) structure, built up of RVEs (of shotcrete)

\(\underline{\underline{\underline{\underline D}}}_{\rm sc}\) :

compliance tensor of shotcrete

e i :

base vectors of orthonormal base frames oriented along needle-shaped hydrates, i = I, II, III

e j :

base vectors of orthonormal base frame within an RVE, j = x, y, z

E a :

activation energy

\(\underline{\underline E} \) :

macroscopic second-order strain tensor

\(\underline{\underline E} _{\rm cp}\) :

macroscopic second-order strain tensor of cement paste

\(\underline{\underline E} _{\rm sc}\) :

macroscopic second-order strain tensor of shotcrete

E :

Young’s modulus

E expsc :

experimentally obtained Young’s modulus of shotcrete

E modsc :

model-predicted Young’s modulus of shotcrete

\({{\mathcal{E}}}\) :

relative error between model-predicted Young’s modulus E modsc and corresponding experimentally obtained value E expsc

\(\bar{{\mathcal{E}}}\) :

mean relative error over several model-predicted and measured Young’s moduli

\({{\mathcal{F}}}\) :

relative error between model-predicted uniaxial compressive strength \(\Upsigma_{\rm mod}^{\rm ult}\) and corresponding experimentally obtained value \(\Upsigma_{\rm exp}^{\rm ult}\)

\(\bar{{\mathcal{F}}}\) :

mean relative error over several model-predicted and measured uniaxial compressive strengths

f air :

volume fraction of air within RVEcp of cement paste

f clin :

volume fraction of cement clinker within RVEcp of cement paste

f hyd :

volume fraction of hydration products within RVEcp of cement paste

\(f_{\rm H_2O}\) :

volume fraction of water within RVEcp of cement paste

f p :

volume fraction of material phase p

\(\bar{f}_{\rm agg}\) :

volume fraction of aggregates within the RVEsc of shotcrete

\(\bar{f}_{\rm cp}\) :

volume fraction of cement paste within the RVEsc of shotcrete

\(\bar{f}_{{\rm hyd}}\) :

volume fraction of hydrates within the RVEsc of shotcrete

h :

thickness of tunnel shell

\(\underline{\underline{\underline{\underline I}}}\) :

symmetric fourth-order unity tensor

i :

index

\(\underline{\underline{\underline{\underline J}}}\) :

volumetric part of \(\underline{\underline{\underline{\underline I}}}\)

j :

index

k :

parameter describing the Drucker–Prager failure surface (of shotcrete)

k air :

bulk modulus of air

k agg :

bulk modulus of aggregates

k clin :

bulk modulus of cement clinker

k hyd :

bulk modulus of hydration products

\(k_{\rm H_2O}\) :

bulk modulus of water

k p :

bulk modulus of material phase p

\(\underline{\underline{\underline{\underline{K}}}}\) :

deviatoric part of \(\underline{\underline{\underline{\underline I}}}\)

ℓ:

characteristic length of RVE

cp :

characteristic length of RVEcp of cement paste

sc :

characteristic length of RVEsc of shotcrete

\(\fancyscript{L}\) :

level of loading

\(\overline{\fancyscript{L}}\) :

\(\fancyscript{L}\) averaged over the tunnel shell thickness

N :

number of summation terms

\(\underline{\underline{\underline{\underline{P}}}}_{p}^{0}\) :

fourth-order Hill tensor of phase p embedded in a matrix with stiffness tensor \(\underline{\underline{\underline{\underline C}}}^0\)

\(\underline{\underline{\underline{\underline P}}}_{\rm cyl}^{0}\) :

fourth-order Hill tensor of a needle-shaped phase embedded in a matrix with stiffness tensor \(\underline{\underline{\underline{\underline C}}}^0\)

\(\underline{\underline{\underline{\underline P}}}_{\rm sph}^{0}\) :

fourth-order Hill tensor of a spherical phase embedded in a matrix with stiffness tensor \(\underline{\underline{\underline{\underline C}}}^0\)

p :

index denoting material phases clinker, hydrates, water, and air

q :

index denoting material phases clinker, water, and air

R :

universal gas constant, R = 8.31447 J mol−1 K−1

RVE:

abbreviation for representative volume element

RVEcp :

abbreviation for a representative volume element of cement paste

RVEsc :

abbreviation for a representative volume element of shotcrete

r :

index

s :

index

\(\underline{\underline{\underline{\underline S}}}_{p}^{0}\) :

fourth-order Eshelby tensor of phase p embedded in a matrix with stiffness tensor \(\underline{\underline{\underline{\underline C}}}^0\)

\(\underline{\underline{\underline{\underline S}}}_{\rm cyl}^{0}\) :

fourth-order Eshelby tensor of a needle-shaped phase embedded in a matrix with stiffness tensor \(\underline{\underline{\underline{\underline C}}}^0\)

\(\underline{\underline{\underline{\underline S}}}_{\rm sph}^{0}\) :

fourth-order Eshelby tensor of a spherical phase embedded in a matrix with stiffness tensor \(\underline{\underline{\underline{\underline C}}}^0\)

t :

time variable

T :

absolute temperature

v sc :

velocity of longitudinal wave propagation in shotcrete

W :

elastic energy stored in the RVE

w/c :

water–cement ratio

\({\underline{x}}\) :

position vector labeling locations within the RVE and on its boundary

α :

parameter describing the Drucker–Prager failure surface (of shotcrete)

α 0 :

volumetric part of \(\underline{\underline{\underline{\underline S}}}_{\rm sph}^{0}\)

β 0 :

deviatoric part of \(\underline{\underline{\underline{\underline S}}}_{\rm sph}^{0}\)

\({\underline{\underline{\gamma}}}\) :

inverse of the acoustic tensor

\(\underline{\underline{\underline{\underline \Gamma}}}\) :

fourth-order tensor needed for determination of the Hill tensor for needle-shaped phases embedded in a transversely isotropic matrix

δ ij :

Kronecker delta

∂Ω:

surface of the RVE

∂Ωcp :

surface of the RVEcp of cement paste

\({\underline{\underline\varepsilon}}_p\) :

linearized second-order strain tensor of material phase p

\({\underline{\underline{\varepsilon}}}^{\rm dev}\) :

deviatoric part of \({\underline{\underline\varepsilon}}\)

\(\overline{\overline{{\varepsilon}^{\rm dev}_p}}\) :

quadratic average of \({{\underline{\underline\varepsilon}}}^{\rm dev}\) over material phase p

κ:

factor relating the uniaxial to the biaxial compressive strength (of shotcrete)

\(\underline{\underline{\kappa}}\) :

acoustic tensor

ϑ:

Euler angle (spherical coordinate)

μ air :

shear modulus of air

μ agg :

shear modulus of aggregates

μ clin :

shear modulus of cement clinker

μ hyd :

shear modulus of hydration products

\(\mu_{\rm H_2O}\) :

shear modulus of water

μ p :

shear modulus of material phase p

ν :

Poisson’s ratio

ρ air :

mass density of air

ρ agg :

mass density of aggregates

ρ clin :

mass density of cement clinker

ρ cp :

macroscopic mass density of cement paste

ρ hyd :

mass density of hydration products

ρ sc :

macroscopic mass density of shotcrete

\(\rho_{\rm H_2O}\) :

mass density of water

\(\underline{\underline{{\sigma}}}_{p}\) :

second-order stress tensor of material phase p

\(\underline{\underline{\sigma}}_{p}^{\rm dev}\) :

deviatoric part \(\underline{\underline{\sigma}}_{p}\)

σ dev p :

norm of stress deviator \(\underline{\underline{\sigma}}_{p}^{\rm dev}\)

\(\overline{\overline{\sigma^{\rm dev}_{p}}}\) :

quadratic average of \(\underline{\underline\sigma}_p^{\rm dev}\)

\(\sigma_{{\mathcal{E}}}\) :

standard deviation of \({{\mathcal{E}}}\)

\(\sigma_{{\mathcal{F}}}\) :

standard deviation of \({{\mathcal{F}}}\)

\(\underline{\underline\Upsigma}\) :

macroscopic second-order stress tensor

\(\underline{\underline\Upsigma}_{\rm cp}\) :

macroscopic second-order stress tensor of cement paste

\(\underline{\underline\Upsigma}_{\rm sc}\) :

macroscopic second-order stress tensor of shotcrete

\(\Upsigma_{\rm exp}^{\rm ult}\) :

experimentally obtained uniaxial compressive strength of shotcrete

\(\Upsigma_{\rm mod}^{\rm ult}\) :

model-predicted uniaxial compressive strength of shotcrete

\(\Upsigma_{\rm sc,11}^{\rm comp,ult}\) :

model-predicted uniaxial compressive strength of shotcrete

φ:

Euler angle (spherical coordinate) describing hydrate orientation

ϕ :

cylindrical coordinate describing position in tunnel shell

ω r :

flexural resonant frequency

Ω:

volume of the RVE

Ωcp :

volume of RVE of cement paste

Ωhyd :

subvolume of Ωcp or of Ωsc, occupied by hydrates

Ω p :

subvolume of Ωcp or of Ωsc, occupied by material phase p

Ωsc :

volume of RVE of shotcrete

ξ:

degree of hydration

\({\underline{\xi}}\) :

displacement vector

\({\underline{\zeta}}\) :

unit length vector indicating the surface of a unit sphere

·:

first-order tensor contraction

::

second-order tensor contraction

×:

vector cross product

⊗:

dyadic product

Appendix 2: vector/matrix notation for symmetric second-order and fourth-order tensors

For computationally economical realization of the tensor operations throughout this paper, second-order and fourth-order tensors are expressed through a compressed symmetric vector/matrix notation with normalized tensorial basis, often referred to as the Kelvin or the Mandel notation [12, 23, 33]: accordingly, a symmetric second-order tensor \(\underline{\underline{A}}=A_{ij} \underline{e}_i\otimes\underline{e}_j\) (sum over indexes appearing twice: i, j = 1, 2, 3) is represented by a [6 × 1]-vector A of the form

$${{\mathbf{A}}}=\left[ \begin{array}{*{20}l} A_{11}&A_{22}&A_{33}&\sqrt{2}A_{23}&\sqrt{2}A_{13}&\sqrt{2}A_{12}\\ \end{array} \right]^{\rm T} $$
(49)

with A ij , i,j ∈ [1,2,3], as the components of \(\underline{\underline{A}}.\) A fourth-order tensor \(\underline{\underline{\underline{\underline{B}}}}=B_{ijrs} \underline{e}_i\otimes\underline{e}_j\otimes\underline{e}_r\otimes \underline{e}_s\) (sum over indexes appearing twice: i, j, r, s = 1, 2, 3), with symmetries B ijrs  = B jirs  = B ijsr , is represented by a [6 × 6]-matrix B, such that

$${{\mathbf{B}}}=\left[ \begin{array}{*{20}l} B_{1111} & B_{1122} & B_{1133} & \sqrt{2}B_{1123} & \sqrt{2}B_{1113} & \sqrt{2}B_{1112} \\ B_{2211} & B_{2222} & B_{2233} & \sqrt{2}B_{2223} & \sqrt{2}B_{2213} & \sqrt{2}B_{2212} \\ B_{3311} & B_{3322} & B_{3333} & \sqrt{2}B_{3323} & \sqrt{2}B_{3313} & \sqrt{2}B_{3312} \\ \sqrt{2}B_{2311} & \sqrt{2}B_{2322} & \sqrt{2}B_{2333} & 2B_{2323} & 2B_{2313} & 2B_{2312} \\ \sqrt{2}B_{1311} & \sqrt{2}B_{1322} & \sqrt{2}B_{1333} & 2B_{1323} & 2B_{1313} & 2B_{1312} \\ \sqrt{2}B_{1211} & \sqrt{2}B_{1222} & \sqrt{2}B_{1233} & 2B_{1223} & 2B_{1213} & 2B_{1212} \\ \end{array} \right]$$
(50)

with B ijrs , i,j,r,s∈[1,2,3], as the components of \(\underline{\underline{\underline{\underline{B}}}}.\)

Appendix 3: computational realization of the strength criterion

Herein, we describe a strategy to compute the term within the curly brackets in the elastic limit criterion (35), i.e., the expression

$$ \max\limits_{\varphi,\vartheta}\left[\lim\limits_{\Updelta\varphi, \Updelta\vartheta\rightarrow 0}\left(\frac{{\mu_{{\rm hyd}}^2}} {\bar{f}_{{\rm hyd};\varphi,\vartheta}}(\underline{e}_z\otimes\underline{e}_z): \underline{\underline{\underline{\underline{C}}}}_{\rm sc}^{-1}: {\frac{{\partial\underline{\underline{\underline{\underline{C}}}}_{\rm sc}}} {\partial \mu_{{\rm hyd};\varphi,\vartheta}}}: \underline{\underline{\underline{\underline {C}}}}_{\rm sc}^{-1}:(\underline{e}_z\otimes\underline{e}_z)\right)^ {\frac{1}{2}}\right] $$
(51)

The required derivative will be approximated by a finite difference quotient. To minimize the efforts to check all hydrate orientations, the derivative of (51) is computed only for needle-shaped hydrates pointing in z-direction (ϑ = 0). Consistently, the macroscopic loading direction (originally \({\underline{e}}_z)\) is (formally) rotated in all directions of \({\mathbb{R}}^3\!\!:\)

$$\begin{aligned} &(51)=\max\limits_{{\varphi},{\vartheta}}\left\{\left[\left(\underline{e}_r \left(\varphi,\vartheta\right)\otimes\underline{e}_r \left(\varphi,\vartheta\right)\right):\underline{\underline{\underline{\underline{C}}}}_{\rm sc}^{-1}\right.\right.\\ &\quad \left.\left. : \lim\limits_{\Updelta\varphi,\Updelta\vartheta\rightarrow0}\left({\frac{\mu_{{\rm hyd}}^2} {\bar{f}_{{\rm hyd};\varphi,\vartheta=0}}}{\frac{\partial \underline{\underline{\underline{\underline{C}}}}_{\rm sc}} {\partial\mu_{{\rm hyd};\varphi,\vartheta=0}}}\right):\underline{\underline{\underline{\underline{C}}}}_{\rm sc}^{-1}:\left(\underline{e}_r\left(\varphi,\vartheta\right)\otimes \underline{e}_r\left(\varphi,\vartheta\right)\right)\right]^{\frac{1} {2}}\right\} , \end{aligned}$$
(52)

with

$$ \underline{e}_r=\cos\varphi \sin\vartheta \underline{e}_x+\sin\varphi \sin\vartheta \underline{e}_y+\cos\vartheta \underline{e}_z. $$
(53)

The term in (52), involving the limits Δφ→0 and Δϑ→0 as well as the derivative of the homogenized stiffness of shotcrete with respect to the shear modulus of needle-shaped hydrates pointing in z-direction, is approximated as

$$ \lim\limits_{\Updelta\varphi,\Updelta\vartheta\rightarrow 0}\left(\frac{\mu_{{\rm hyd}}^2} {\bar{f}_{{\rm hyd};\varphi,\vartheta=0}} \frac{\partial \underline{\underline{\underline{\underline{C}}}}_{\rm sc}} {\partial\mu_{{\rm hyd};\varphi,\vartheta=0}}\right) \approx{\frac{\mu_{{\rm hyd}}^2} {\bar{f}_{{\rm hyd};\varphi,\vartheta=0}}} \left[{\frac{\underline{\underline{\underline {\underline{C}}}}_{\rm sc,aniso}{\left(\mu_{{\rm hyd},\varphi,\vartheta=0}= 1.005 \mu_{{\rm hyd}}\right)}-\underline{\underline{\underline{\underline {C}}}}_{\rm sc}} {0.005 \mu_{{\rm hyd}}}}\right] , $$
(54)

with

$$ \bar{f}_{{\rm hyd};\varphi,\vartheta=0}=0.001 . $$
(55)

The chosen values of one per mille volume fraction of \(\underline{e}_z\)-oriented hydrates [see (55)] and of five per mille increase of the corresponding hydrate shear modulus [see (54)] are (a) small enough as to ensure that the finite difference quotient accurately approximates the expression on the left-hand side of (54), and (b) large enough as to avoid numerical problems related to the computation of the finite difference quotient. \(\underline{\underline{\underline{\underline C}}}_{\rm sc,aniso}\) is the Mori–Tanaka stiffness estimate for shotcrete considering that the shear modulus of the hydrates pointing in z-direction is by five-tenth of a percent larger than the one of all other hydrates. Hence, \(\underline{\underline{\underline{\underline C}}}_{\rm sc,aniso}\) is a transversely isotropic tensor. Its computation requires the following modification of (23):

$$ \begin{aligned} \underline{\underline{\underline{\underline C}}}_{\rm sc,aniso}&=\left\{\bar{f}_{\rm cp} \underline{\underline{\underline{\underline C}}}_{\rm cp,aniso}+\bar{f}_{\rm agg} \underline{\underline{\underline{\underline{C}}}}_{\rm agg}:\left[\underline{\underline{\underline{\underline{I}}}}+\underline{\underline{\underline{\underline P}}}_{\rm sph}^{\rm cp}:(\underline{\underline{\underline{\underline{C}}}}_{\rm agg}- \underline{\underline{\underline{\underline{C}}}}_{\rm cp,aniso})\right]^{-1}\right\}\\ &\quad :\left\{\bar{f}_{\rm cp} \underline{\underline{\underline{\underline{I}}}}+\bar{f}_{\rm agg}\left[\underline{\underline{\underline{\underline I}}}+\underline{\underline{\underline{\underline{P}}}}_{\rm sph}^{\rm cp}:(\underline{\underline{\underline{\underline{C}}}}_{\rm agg}-\underline{\underline{\underline{\underline{C}}}}_{\rm cp,aniso})\right]^{-1}\right\}^{-1} .\end{aligned}$$
(56)

In (56), \(\underline{\underline{\underline{\underline C}}}_{\rm cp,aniso}\) is the self-consistent stiffness estimate of cement paste considering that the shear modulus of the hydrates pointing in z-direction is by five-tenth of a percent larger than the one of the other hydrates. Hence, \(\underline{\underline{\underline{\underline C}}}_{\rm cp,aniso}\) is a transversely isotropic tensor, the computation of which requires the following modification of (19)–(21):

$$ \begin{aligned} \underline{\underline{\underline{\underline{C}}}}_{\rm cp,aniso}&= \left\{\sum_{ \begin{array}{*{20}l} p={\rm clin},\\ {\rm H_2{\rm O,air}}\\ \end{array}} f_{p} \underline{\underline{\underline{\underline C}}}_{p }:\left[\underline{\underline{\underline{\underline I}}}+\underline{\underline{\underline{\underline P}}}_{\rm sph}^{\rm cp}:(\underline{\underline{\underline{\underline C}}}_{p }-\underline{\underline{\underline{\underline C}}}_{\rm cp,aniso})\right]^{-1}\right.\\ &\left.\quad +\sum_{{i}=1}^{15} \frac{f_{{\rm hyd}}}{15} \underline{\underline{\underline{\underline C}}}_{{\rm hyd}}:\left[\underline{\underline{\underline{\underline I}}}+\underline{\underline{\underline{\underline P}}}_{\rm cyl}^{\rm cp}(\varphi_{i },\vartheta_{i }):(\underline{\underline{\underline{\underline C}}}_{{\rm hyd}}-\underline{\underline{\underline{\underline C}}}_{\rm cp,aniso}) \right]^{-1}\right.\\ &\left.\quad - \bar{f}_{{\rm hyd};\varphi,\vartheta=0} \underline{\underline{\underline{\underline C}}}_{{\rm hyd}}:\left[\underline{\underline{\underline{\underline I}}}+\underline{\underline{\underline{\underline P}}}_{\rm cyl}^{\rm cp}(\vartheta=0): (\underline{\underline{\underline{\underline C}}}_{{\rm hyd}}-\underline{\underline{\underline{\underline C}}}_{\rm cp,aniso}) \right]^{-1}\right.\\ &\left.\quad + \bar{f}_{{\rm hyd};\varphi,\vartheta=0} \underline{\underline{\underline{\underline C}}}_{{\rm hyd},\vartheta=0}:\left[\underline{\underline{\underline{\underline I}}}+\underline{\underline{\underline{\underline P}}}_{\rm cyl}^{\rm cp}(\vartheta=0): (\underline{\underline{\underline{\underline C}}}_{{\rm hyd},\vartheta=0}-\underline{\underline{\underline{\underline C}}}_{\rm cp,aniso}) \right]^{-1}\right\}\\ &\quad :\left\{\sum_{ \begin{array}{*{20}l} q={\rm clin},\\ {\rm H_2O,air}\\ \end{array}} f_q\left[\underline{\underline{\underline{\underline I}}}+\underline{\underline{\underline{\underline P}}}_{\rm sph}^{\rm cp}:(\underline{\underline{\underline{\underline C}}}_q-\underline{\underline{\underline{\underline C}}}_{\rm cp,aniso})\right]^{-1}\right.\\ &\left.\quad + \sum_{j=1}^{15}\frac{f_{{\rm hyd}}}{15} \underline{\underline{\underline{\underline C}}}_{{\rm hyd}}:\left[\underline{\underline{\underline{\underline I}}}+\underline{\underline{\underline{\underline P}}}_{\rm cyl}^{\rm cp}(\varphi_j,\vartheta_j): (\underline{\underline{\underline{\underline{C}}}}_{{\rm hyd}}- \underline{\underline{\underline{\underline{C}}}}_{\rm cp,aniso})\right]^{- 1} \right.\\ &\left.\quad - \bar{f}_{{\rm hyd};\varphi,\vartheta=0} \underline{\underline{\underline{\underline C}}}_{{\rm hyd}}:\left[\underline{\underline{\underline{\underline I}}}+\underline{\underline{\underline{\underline P}}}_{\rm cyl}^{\rm cp}(\vartheta\!=\!0)\!: \!(\underline{\underline{\underline{\underline C}}}_{{\rm hyd}}\!-\!\underline{\underline{\underline{\underline C}}}_{\rm cp,aniso}) \right]^{-1}\right.\\ &\left.\quad + \bar{f}_{{\rm hyd};\varphi,\vartheta=0} \underline{\underline{\underline{\underline C}}}_{{\rm hyd},\vartheta=0}:\left[\underline{\underline{\underline{\underline I}}}+ \underline{\underline{\underline{\underline P}}}_{\rm cyl}^{\rm cp}(\vartheta=0): (\underline{\underline{\underline{\underline C}}}_{{\rm hyd},\vartheta=0}-\underline{\underline{\underline{\underline C}}}_{\rm cp,aniso}) \right]^{-1}\right\}^{-1} \\ \end{aligned} $$
(57)

with

$$ \underline{\underline{\underline{\underline C}}}_{{\rm hyd}}=3 k_{{\rm hyd}} \underline{\underline{\underline{\underline{J}}}}+2 \mu_{{\rm hyd}} \underline{\underline{\underline{\underline{K}}}}\qquad \hbox{and} \qquad\underline{\underline{\underline{\underline C}}}_{{\rm hyd},\vartheta=0}= 3 k_{{\rm hyd}} \underline{\underline{\underline{\underline{J}}}}+2 (1.005 \mu_{{\rm hyd}}) \underline{\underline{\underline{\underline{K}}}} . $$
(58)

The terms in the second and the sixth line of (57) refer to integrals over all hydrate orientations, where the intrinsic elastic stiffness of hydrates (Table 1) is considered. The terms in the third, fourth, seventh, and eighth line of (57) refer to a bundle of hydrates pointing in z-direction, with volume fraction \(\bar{f}_{{\rm hyd};\varphi,\vartheta=0}\) [see (55)]. The terms in the third and the seventh line of (57) subtract (from the aforementioned integrals over all hydrate orientations) the contribution of such a bundle of hydrates with the intrinsic shear modulus μ hyd of Table 1, while the terms in the fourth and the eighth line of (57) add—as required for computation of the finite difference quotient (54)—the contribution of such a bundle of hydrates with the increased shear modulus 1.005μ hyd. Notably, in both (56) and (57), all Hill tensors need to account for the anisotropy of \(\underline{\underline{\underline{\underline C}}}_{\rm cp,aniso}\). Differing from the expressions (13)–(17), such Hill tensors are given in the subsequent Appendix 4.

Appendix 4: computation of Hill tensors

Nonzero components of the Hill tensor for spherical inclusions (clinker, water, and air) in the transversely isotropic cement paste matrix of stiffness \(\underline{\underline{\underline{\underline C}}}_{\rm cp,aniso}\) [see (57)], \(\underline{\underline{\underline{\underline P}}}^{\rm cp}_{\rm sph},\) read as [21, 25]

$$ \begin{aligned} P_{\rm sph,1111}&=\frac{1} {16} \int\limits_{-1}^1-(-5C_{1111}x^4C_{3333}-3C_{1122}x^2C_{3333}- 3C_{1122}x^4C_{2323}\\ &\quad +3C_{1122} x^4C_{3333}+5C_{1111}x^4C_{2323}- 10C_{1111}C_{2323}x^2+2x^4C^{2}_{1133}\\ &\quad +8C_{2323}x^4C_{3333}- 6C^{2}_{2323}x^4+4C_{2323}x^4C_{1133}+6C_{1122}C_{2323}x^2\\ &\quad +5C_{1111}C_{2323}+5C_{1111}x^2C_{3333}- 4C_{2323}x^2C_{1133}+6C^{2}_{2323}x^2\\ &\quad -2x^2C^{2}_{1133}-3C_{1122}C_{2323})(-1+x^2)/{{\mathcal{D}}}_1{\rm d}x \\ \end{aligned} $$
(59)
$$ \begin{aligned} P_{\rm sph,1122}&=P_{\rm sph,2211}=\frac{1} {16} \int\limits_{-1}^1(C_{1111}C_{2323}- 2C_{1111}C_{2323}x^2+C_{1111}x^2C_{3333}\\ &\quad +C_{1122}C_{2323}- 2C_{1122}C_{2323}x^2+C_{1122}x^2C_{3333}+C_{1111}x^4C_{2323}\\ &\quad -C_{1111}x^4C_{3333}+C_{1122}x^4C_{2323}-C_{1122}x^4C_{3333}- 2C^{2}_{2323}x^2+2C^{2}_{2323}x^4\\ &\quad -4C_{2323}x^2C_{1133}+4C_{2323}x^4C_{1133}-2x^2C^{2}_{1133}\\ &\quad +2x^4C^{2}_{1133})(-1+x^2)/{{\mathcal{D}}}_1{\rm d}x \\ \end{aligned} $$
(60)
$$ P_{\rm sph,1133}=P_{\rm sph,3311}=\frac{1}{4} \int\limits_{-1}^1(-1+x^2)x^2(C_{2323}+C_{1133})/ {{\mathcal{D}}}_2 {\rm d}x $$
(61)
$$ \begin{aligned} P_{\rm sph,2323}&={\frac{1}{16}} \int\limits_{-1}^1(4C_{1111}C_{2323}x^2-8C_{2323}x^4C_{1133}-2x^4C^{2}_{1133}- C_{1122}x^4C_{3333}\\ &\quad-8C_{1111}x^4C_{2323}+3C_{1111}x^4C_{3333}+4C_{1111}x^4C_{1133}- 4C_{1122}x^4C_{1133}\\ &\quad+2C_{1122}x^6C_{1133}-2C_{1111}x^6C_{1133}+C_{1122}x^6C_{1111}- 3C_{1122}x^4C_{1111}\\ &\quad +3C_{1122}C_{1111}x^2- 2C_{1111}x^2C_{1133}+2C_{1122}x^2C_{1133}+8x^6C_{2323}C_{1133}\\ &\quad - 3x^6C_{1111}C_{3333}+4x^6C_{2323}C_{3333}+4C_{1111}x^6C_{2323}+C_{1122}x ^6C_{3333}\\ &\quad +3C^{2}_{1111}x^4-C^{2}_{1111}x^6+2C^{2}_{1133}x^6- 3C^{2}_{1111}x^2+C^{2}_{1111}\\ &\quad -C_{1122}C_{1111})/{{\mathcal{D}}}_1{\rm d}x \\ \end{aligned} $$
(62)
$$ P_{\rm sph,3333}=\frac{1}{2} \int\limits_{-1}^1x^2(x^2C_{2323}-C_{1111}x^2+C_{1111})/{{\mathcal{D}}}_2{\rm d}x $$
(63)

whereby

$$ \begin{aligned} {{\mathcal{D}}}_1 &= -2C^{2}_{1111}x^4C_{3333}+2C^{2}_{2323}x^6C_{3333}- 4C_{1111}C^{2}_{2323}x^4-3C^{2}_{1111}C_{2323}x^2\\ &\quad+C^{2}_{1111}x^2C_{3333}+2C_{1111}C^{2}_{2323}x^2- 2C_{2323}x^4C^{2}_{1133}-C_{1111}C^{2}_{1133}x^6\\ &\quad +2C_{1111}C^{2}_{1133}x^4+4C^{2}_{2323}x^6C_{1133}- 2C_{1122}C^{2}_{1133}x^4+2C_{2323}x^6C^{2}_{1133}\\ &\quad +3C^{2}_{1111}x^4C_{2323}+C_{1122}C^{2}_{1133}x^6- C^{2}_{1111}x^6C_{2323}+2C_{1111}x^6C^{2}_{2323}\\ &\quad +C^{2}_{1111}x^6C_{3333}-C_{1111}C^{2}_{1133}x^2- 4C^{2}_{2323}x^4C_{1133}+C_{1122}C^{2}_{1133}x^2\\ &\quad +C^{2}_{1111}C_{2323}-C_{1122}C_{1111}C_{2323}- C_{1122}x^6C_{1111}C_{3333}+4C_{1111}x^4C_{2323}C_{1133}\\ &\quad -2C_{1111}x^2C_{2323}C_{1133}- 4C_{1122}x^4C_{2323}C_{1133}+2C_{1122}x^2C_{2323}C_{1133}\\ &\quad +2C_{1122}x^6C_{2323}C_{1133}-2C_{1111}x^6C_{2323}C_{1133}- 3C_{1111}x^6C_{2323}C_{3333}\\ &\quad +2C_{1122}C_{1111}x^4C_{3333}-C_{1122}C_{2323}x^4C_{3333}- 3C_{1122}C_{1111}x^4C_{2323}\\ & \quad - C_{1122}C_{1111}x^2C_{3333}+3C_{1122}C_{1111}C_{2323}x^2+3C_{1111}C_{232 3}x^4C_{3333}\\ &\quad +C_{1122}x^6C_{1111}C_{2323}+C_{1122}x^6C_{2323}C_{3333}\\ \end{aligned} $$
(64)

and

$$ \begin{aligned} {{\mathcal{D}}}_2 &= 2C_{2323}x^4C_{1133}+C_{2323}x^4C_{3333}+C_{1111}x^4C_{2323}- 2C_{2323}x^2C_{1133}\\ &\quad -2C_{1111}C_{2323}x^2+C_{1111}C_{2323}+x^4C^{2}_{1133}- C_{1111}x^4C_{3333}-x^2C^{2}_{1133}\\ &\quad +C_{1111}x^2C_{3333}\\ \end{aligned} $$
(65)

whereby C ijrs stands for C cp,aniso,ijrs in (59)–(61). The integral expressions in (59)–(61) are evaluated numerically, based on an adaptive Simpson quadrature.

The Hill tensor for the needle-shaped hydrate phase, embedded in the transversely isotropic cement paste matrix, \(\underline{\underline{\underline{\underline P}}}^{\rm cp}_{\rm cyl},\) reads as [19]

$$ \underline{\underline{\underline{\underline P}}}_{\rm cyl}^{\rm cp}=\frac{1} {2\pi} \int\limits_{0}^{2\pi}\underline{\underline{\underline{\underline \Gamma}}}(\varphi,\vartheta=\frac{\pi}{2}){\rm d}\varphi $$
(66)

with the fourth-order tensor \(\underline{\underline{\underline{\underline {\Gamma}}}}\) reading as

$$ \begin{aligned} \underline{\underline{\underline{\underline{\Gamma}}}}&= \underline{\zeta} \mathop \otimes \limits^s \underline{\underline{\kappa}}^{-1} \mathop \otimes \limits^s {\underline{\zeta}}={\underline{\zeta}} \mathop \otimes \limits^s {\underline{\underline{\gamma}}} \mathop \otimes \limits^s {\underline{\zeta}},\\ {\Gamma}_{ijrs}&=\frac{1} {4}\left(\zeta_i{\gamma}_{jr}\zeta_s+\zeta_j{\gamma}_{ir}\zeta_s+\zeta_i {\gamma} _{js}\zeta_r+\zeta_j{\gamma}_{is}\zeta_r\right) \\ \end{aligned} $$
(67)

with the symmetrized dyadic product \(\mathop \otimes \limits^s ,\) and with \(\underline{\underline{\gamma}}\) as the inverse of the acoustic tensor \(\underline{\underline{\kappa}}\) reading as

$$ \begin{aligned} \underline{\underline{\kappa}}&={\underline{\zeta}} \cdot \underline{\underline{\underline{\underline C}}}_{\rm cp,aniso}\cdot\underline{\zeta}\\ \kappa_{ij}&=\zeta_{r } C_{{\rm cp,aniso,}ijrs}\zeta_s \\ \end{aligned} $$
(68)

with the unit length vector \(\underline{\zeta}\) indicating the surface of a unit sphere,

$$\underline{\zeta}=\sin\vartheta\cos\varphi\underline{e}_I+ \sin\vartheta\sin\varphi\underline{e}_{II}+\cos\vartheta\underline{e}_{I II} . $$
(69)

Appendix 5: tests of Lafarge [45]: determination of uniaxial compressive strength as a function of hydration degree

Since the shotcrete cured under quasiadiabatic conditions hydrated significantly faster than the one stored under quasi-isothermal conditions, Young’s moduli and compressive strength values measured at the same shotcrete age correspond to different hydration degrees, and consequently, they cannot be correlated. Instead, we combined the measured Young’s modulus–time relationship with the validated shotcrete elasticity model (providing a relation between Young’s modulus and hydration degree). This allowed for identifying the temporal evolution of the hydration degree of shotcrete hydrating under quasi-isothermal conditions. The obtained hydration degree–time relationship, \(\xi=\xi(t)\rightarrow\dot{\xi}=\dot{\xi}(t),\) as well as the quasi-isothermal curing temperature T = 289.5 K, were the basis for identification of the normalized chemical affinity \(\tilde{A},\) quantifying the hydration kinetics, \(\tilde{A}(\xi(t))=\dot{\xi}(t)\exp(E_{\rm a}/(RT))\). ξ(t) and \(\tilde{A}(\xi(t))\) give access to the affinity as a function of the hydration degree, as described by Ulm and Coussy [80] and Hellmich et al. [32]. Since \(\tilde{A}(\xi)\) is an intrinsic shotcrete property depending on shotcrete composition only, the identified \(\tilde{A}(\xi)\) relationship also applies for the same shotcrete exposed to quasiadiabatic conditions. The temporal evolution of the hydration degree in the latter shotcrete was evaluated by inserting both (a) the obtained \(\tilde{A}(\xi)\) relationship and (b) the available temperature history of the quasiadiabatically hydrating shotcrete into Eq. 41. From the obtained hydration degree–time relationship, we read off the hydration degrees at the time instants of the strength measurements; corresponding pairs of strength values and hydration degrees are depicted through the squares in Fig. 5b.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pichler, B., Scheiner, S. & Hellmich, C. From micron-sized needle-shaped hydrates to meter-sized shotcrete tunnel shells: micromechanical upscaling of stiffness and strength of hydrating shotcrete. Acta Geotech. 3, 273–294 (2008). https://doi.org/10.1007/s11440-008-0074-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-008-0074-z

Keywords

Navigation