Skip to main content
Log in

Frequency-specific abnormalities in regional homogeneity among children with attention deficit hyperactivity disorder: a resting-state fMRI study

  • Article
  • Life & Medical Sciences
  • Published:
Science Bulletin

Abstract

Although many functional magnetic resonance imaging (fMRI) studies have investigated the neurophysiology of attention deficit hyperactivity disorder (ADHD), the existing studies have not yielded consistent findings. This may be related to the different properties of different frequency bands. To investigate the frequency-specific regional homogeneity (ReHo) of spontaneous neural activities in ADHD, the current study used resting-state fMRI to explore the ReHo properties of five frequency bands, slow-5 (0.01–0.027 Hz), slow-4 (0.027–0.073 Hz), slow-3 (0.073–0.198 Hz), slow-2 (0.198–0.25 Hz) and the extra-low frequency (0–0.01 Hz), in 30 drug-naive boys with ADHD and 30 healthy controls. Compared with controls, the ADHD group showed decreased ReHo in the default mode network (DMN) including the medial prefrontal cortex and precuneus, middle frontal gyrus and angular gyrus. ADHD patients also showed increased ReHo in the posterior cerebellum. Significant interactions between frequency band and group were observed predominantly in the dorsolateral prefrontal and parietal cortices, orbital frontal cortex, supplementary motor area, inferior occipital gyrus, thalamus and anterior cerebellum. In particular, we found that the between-group difference in the extra-low frequency band (0–0.01 Hz) seemed to be greater than that in the other frequency bands for most brain regions. The findings suggest that ADHD children display widespread abnormalities in regional brain activity, particularly in the DMN and attention network, and these abnormalities show frequency specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Biederman J, Faraone SV (2005) Attention-deficit hyperactivity disorder. Lancet 366:237–248

    Article  Google Scholar 

  2. Bush G, Valera EM, Seidman LJ (2005) Functional neuroimaging of attention-deficit/hyperactivity disorder: a review and suggested future directions. Biol Psychiatry 57:1273–1284

    Article  Google Scholar 

  3. Bush G (2010) Attention-deficit/hyperactivity disorder and attention networks. Neuropsychopharmacology 35:278–300

    Article  Google Scholar 

  4. Dickstein SG, Bannon K, Castellanos FX et al (2006) The neural correlates of attention deficit hyperactivity disorder: an ALE meta-analysis. J Child Psychol Psychiatry 47:1051–1062

    Article  Google Scholar 

  5. Durston S, van Belle J, de Zeeuw P (2011) Differentiating frontostriatal and fronto-cerebellar circuits in attention-deficit/hyperactivity disorder. Biol Psychiatry 69:1178–1184

    Article  Google Scholar 

  6. Rubia K, Halari R, Cubillo A et al (2011) Methylphenidate normalizes fronto-striatal underactivation during interference inhibition in medication-naïve boys with attention-deficit hyperactivity disorder. Neuropsychopharmacology 36:1575–1586

    Article  Google Scholar 

  7. Valera EM, Faraone SV, Murray KE et al (2007) Meta-analysis of structural imaging findings in attention-deficit/hyperactivity disorder. Biol Psychiatry 61:1361–1369

    Article  Google Scholar 

  8. Tian L, Jiang T, Wang Y et al (2006) Altered resting-state functional connectivity patterns of anterior cingulate cortex in adolescents with attention deficit hyperactivity disorder. Neurosci Lett 400:39–43

    Article  Google Scholar 

  9. Sun L, Cao Q, Long X et al (2012) Abnormal functional connectivity between the anterior cingulate and the default mode network in drug-naïve boys with attention deficit hyperactivity disorder. Psychiatry Res 201:120–127

    Article  Google Scholar 

  10. Castellanos FX, Margulies DS, Kelly C et al (2008) Cingulate-precuneus interactions: a new locus of dysfunction in adult attention-deficit/hyperactivity disorder. Biol Psychiatry 63:332–337

    Article  Google Scholar 

  11. Zang Y, Jiang T, Lu Y et al (2004) Regional homogeneity approach to fMRI data analysis. NeuroImage 22:394–400

    Article  Google Scholar 

  12. Liu H, Liu Z, Liang M et al (2006) Decreased regional homogeneity in schizophrenia: a resting state functional magnetic resonance imaging study. NeuroReport 17:19–22

    Article  Google Scholar 

  13. Liu Z, Xu C, Xu Y et al (2010) Decreased regional homogeneity in insula and cerebellum: a resting-state fMRI study in patients with major depression and subjects at high risk for major depression. Psychiatry Res 182:211–215

    Article  Google Scholar 

  14. Wu T, Long X, Zang Y et al (2009) Regional homogeneity changes in patients with Parkinson’s disease. Hum Brain Mapp 30:1502–1510

    Article  Google Scholar 

  15. Mankinen K, Long XY, Paakki JJ et al (2011) Alterations in regional homogeneity of baseline brain activity in pediatric temporal lobe epilepsy. Brain Res 1373:221–229

    Article  Google Scholar 

  16. An L, Cao XH, Cao QJ et al (2013) Methylphenidate normalizes resting-state brain dysfunction in boys with attention deficit hyperactivity disorder. Neuropsychopharmacology 38:1287–1295

    Article  Google Scholar 

  17. Cao Q, Zang Y, Sun L et al (2006) Abnormal neural activity in children with attention deficit hyperactivity disorder: a resting-state functional magnetic resonance imaging study. NeuroReport 17:1033–1036

    Article  Google Scholar 

  18. Cheng W, Ji X, Zhang J et al (2012) Individual classification of ADHD patients by integrating multiscale neuroimaging markers and advanced pattern recognition techniques. Front Syst Neurosci 6:58

    Article  Google Scholar 

  19. Buzsaki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304:1926–1929

    Article  Google Scholar 

  20. Penttonen M, Buzsaki G (2003) Natural logarithmic relationship between brain oscillators. Thalamus Relat Syst 2:145–152

    Article  Google Scholar 

  21. Cordes D, Haughton VM, Arfanakis K et al (2001) Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data. AJNR Am J Neuroradiol 22:1326–1333

    Google Scholar 

  22. Malinen S, Vartiainen N, Hlushchuk Y et al (2010) Aberrant temporal and spatial brain activity during rest in patients with chronic pain. Proc Natl Acad Sci USA 107:6493–6497

    Article  Google Scholar 

  23. Zuo XN, Di Martino A, Kelly C et al (2010) The oscillating brain: complex and reliable. NeuroImage 49:1432–1445

    Article  Google Scholar 

  24. Xue SW, Li D, Weng XC et al (2014) Different neural manifestations of two slow frequency bands in resting functional magnetic resonance imaging: a systemic survey at regional, interregional, and network levels. Brain Connect 4:242–255

    Article  Google Scholar 

  25. Yu R, Hsieh MH, Wang HL et al (2013) Frequency dependent alterations in regional homogeneity of baseline brain activity in schizophrenia. PLoS One 8:e57516

    Article  Google Scholar 

  26. Han Y, Wang J, Zhao Z et al (2011) Frequency-dependent changes in the amplitude of low-frequency fluctuations in amnestic mild cognitive impairment: a resting-state fMRI study. NeuroImage 55:287–295

    Article  Google Scholar 

  27. Yu R, Chien YL, Wang HL et al (2014) Frequency-specific alternations in the amplitude of low-frequency fluctuations in schizophrenia. Hum Brain Mapp 35:627–637

    Article  Google Scholar 

  28. Yue Y, Jia X, Hou Z et al (2015) Frequency-dependent amplitude alterations of resting-state spontaneous fluctuations in late-onset depression. BioMed Res Int 505479

  29. Gong Y, Cai T (1993) Manual of Chinese revised Wechsler intelligence scale for children. Hunan Atlas Publishing House, Changsha

    Google Scholar 

  30. Barkley RA (1998) Attention-deficit hyperactivity disorder: a clinical workbook, 2nd edn. Guilford, New York, pp 39–55

    Google Scholar 

  31. Yan CG, Zang YF (2010) DPARSF: a MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Front Syst Neurosci 4:13

    Google Scholar 

  32. Song XW, Dong ZY, Long XY et al (2011) REST: a toolkit for resting-state functional magnetic resonance imaging data processing. PLoS One 6:e25031

    Article  Google Scholar 

  33. Lv Y, Margulies DS, Villringer A et al (2013) Effects of finger tapping frequency on regional homogeneity of sensorimotor cortex. PLoS One 8:e64115

    Article  Google Scholar 

  34. Van Dijk KR, Sabuncu MR, Buckner RL (2012) The influence of head motion on intrinsic functional connectivity MRI. NeuroImage 59:431–438

    Article  Google Scholar 

  35. Cox RW (1996) AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29:162–173

    Article  Google Scholar 

  36. Ledberg A, Akerman S, Roland PE (1998) Estimation of the probabilities of 3D clusters in functional brain images. NeuroImage 8:113–128

    Article  Google Scholar 

  37. Broyd SJ, Demanuele C, Debener S et al (2009) Default-mode brain dysfunction in mental disorders: a systematic review. Neurosci Biobehav Rev 33:279–296

    Article  Google Scholar 

  38. Wilson TW, Franzen JD, Heinrichs-Graham E et al (2013) Broadband neurophysiological abnormalities in the medial prefrontal region of the default-mode network in adults with ADHD. Hum Brain Mapp 34:566–574

    Article  Google Scholar 

  39. Cavanna AE, Trimble MR (2006) The precuneus: a review of its functional anatomy and behavioural correlates. Brain 129:564–583

    Article  Google Scholar 

  40. Cao X, Cao Q, Long X et al (2009) Abnormal resting-state functional connectivity patterns of the putamen in medication-naive children with attention deficit hyperactivity disorder. Brain Res 1303:195–206

    Article  Google Scholar 

  41. Uddin LQ, Kelly AM, Biswal BB et al (2008) Network homogeneity reveals decreased integrity of default-mode network in ADHD. J Neurosci Methods 169:249–254

    Article  Google Scholar 

  42. Helps S, James C, Debener S et al (2008) Very low frequency EEG oscillations and the resting brain in young adults: a preliminary study of localisation, stability and association with symptoms of inattention. J Neural Transm 115:279–285

    Article  Google Scholar 

  43. Andrews-Hanna JR, Snyder AZ, Vincent JL et al (2007) Disruption of large-scale brain systems in advanced aging. Neuron 56:924–935

    Article  Google Scholar 

  44. Luhmann CC, Chun MM, Yi DJ et al (2008) Neural dissociation of delay and uncertainty in intertemporal choice. J Neurosci 28:14459–14466

    Article  Google Scholar 

  45. Cherkasova MV, Hechtman L (2009) Neuroimaging in attention-deficit hyperactivity disorder: beyond the frontostriatal circuitry. Can J Psychiatry 54:651–664

    Google Scholar 

  46. Middleton FA, Strick PL (2000) Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Rev 31:236–250

    Article  Google Scholar 

  47. Rubia K, Smith AB, Halari R et al (2009) Disorder-specific dissociation of orbitofrontal dysfunction in boys with pure conduct disorder during reward and ventrolateral prefrontal dysfunction in boys with pure ADHD during sustained attention. Am J Psychiatry 166:83–94

    Article  Google Scholar 

  48. Rubia K, Halari R, Christakou A et al (2009) Impulsiveness as a timing disturbance: neurocognitive abnormalities in attention-deficit hyperactivity disorder during temporal processes and normalization with methylphenidate. Philos Trans R Soc Lond B Biol Sci 364:1919–1931

    Article  Google Scholar 

  49. Song X, Zhang Y, Liu Y (2014) Frequency specificity of regional homogeneity in the resting-state human brain. PLoS One 9:e86818

    Article  Google Scholar 

  50. Fox MD, Snyder AZ, Vincent JL et al (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102:9673–9678

    Article  Google Scholar 

  51. Fransson P (2005) Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum Brain Mapp 26:15–29

    Article  Google Scholar 

  52. Fransson P (2006) How default is the default mode of brain function? Further evidence from intrinsic BOLD signal fluctuations. Neuropsychologia 44:2836–2845

    Article  Google Scholar 

  53. Gohel SR, Biswal BB (2015) Functional integration between brain regions at rest occurs in multiple-frequency bands. Brain Connect 5:23–34

    Article  Google Scholar 

  54. Barry RJ, Clarke AR, Johnstone SJ (2003) A review of electrophysiology in attention-deficit/hyperactivity disorder: I. Qualitative and quantitative electroencephalography. Clin Neurophysiol 114:171–183

    Article  Google Scholar 

  55. He BJ, Snyder AZ, Zempel JM et al (2008) Electrophysiological correlates of the brain’s intrinsic large-scale functional architecture. Proc Natl Acad Sci USA 105:16039–16044

    Article  Google Scholar 

  56. Wang L, Saalmann YB, Pinsk MA et al (2012) Electrophysiological low-frequency coherence and cross-frequency coupling contribute to BOLD connectivity. Neuron 76:1010–1020

    Article  Google Scholar 

  57. Jiang L, Xu T, Hou XH et al (2014) Toward neurobiological characterization of functional homogeneity in the human cortex: regional variation, morphological association and functional covariance network organization. Brain Struct Funct. doi:10.1007/s00429-014-0795-8

    Google Scholar 

  58. Yuan BK, Wang J, Zang YF et al (2014) Amplitude differences of high frequency fMRI signal between eyes open and eyes closed resting states. Front Hum Neurosci 8:503. doi:10.3389/fnhum.2014.00503

    Article  Google Scholar 

  59. Weissenbacher A, Kasess C, Gerstl F et al (2009) Correlations and anticorrelations in resting-state functional connectivity MRI: a quantitative comparison of preprocessing strategies. NeuroImage 47:1408–1416

    Article  Google Scholar 

  60. Saad ZS, Gotts SJ, Murphy K et al (2012) Trouble at rest: how correlation patterns and group differences become distorted after global signal regression. Brain Connect 2:25–32

    Article  Google Scholar 

  61. Zuo XN, Xu T, Jiang L et al (2013) Toward reliable characterization of functional homogeneity in the human brain: preprocessing, scan duration, imaging resolution and computational space. NeuroImage 65:374–386

    Article  Google Scholar 

  62. Dennis M, Francis DJ, Cirino PT et al (2009) Why IQ is not a covariate in cognitive studies of neurodevelopmental disorders. J Int Neuropsychol Soc 15:331–343

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Development Program of China (2014CB846104), the National Natural Science Foundation of China (81371496, 30970802, 81101014) and the Program for New Century Excellent Talents in University (NCET-11- 0013). Dr. Zang is partly supported by the “Qian Jiang Distinguished Professor” Program.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Sun.

Additional information

SPECIAL TOPIC Human Functional Connectomics: Focus on Brain Development

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 27131 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Yuan, B., Cao, Q. et al. Frequency-specific abnormalities in regional homogeneity among children with attention deficit hyperactivity disorder: a resting-state fMRI study. Sci. Bull. 61, 682–692 (2016). https://doi.org/10.1007/s11434-015-0823-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-015-0823-y

Keywords

Navigation