Skip to main content
Log in

An investigation of the acute effects of aerobic exercise on executive function and cortical excitability in adolescents with attention deficit hyperactivity disorder (ADHD)

  • Original Contribution
  • Published:
European Child & Adolescent Psychiatry Aims and scope Submit manuscript

Abstract

Previous studies have shown that aerobic exercise has beneficial effects on executive function in adolescents with attention-deficit hyperactivity disorder (ADHD). The underlying mechanisms could be partially due to aerobic exercise-induced cortical excitability modulation. The aim of this study was to explore the effects of acute aerobic exercise on executive functions and cortical excitability and the association between these phenomena in adolescents with ADHD. The study was conducted using a complete crossover design. Executive functions (inhibitory control, working memory, and planning) and cortical excitability were assessed in twenty-four drug-naïve adolescents with ADHD before and after acute aerobic exercise or a control intervention. Inhibitory control, working memory, and planning improved after acute aerobic exercise in adolescents with ADHD. Moreover, cortical excitability monitored by transcranial magnetic stimulation (TMS) decreased after intervention in this population. Additionally, improvements in inhibitory control and working memory performance were associated with enhanced cortical inhibition. The findings provide indirect preliminary evidence for the assumption that changes in cortical excitability induced by aerobic exercise partially contribute to improvements in executive function in adolescents with ADHD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Castellanos F et al (2006) Characterizing cognition in ADHD: beyond executive dysfunction. Trends Cogn Sci 10:117–123

    Article  PubMed  Google Scholar 

  2. Fayyad J et al (2017) The descriptive epidemiology of DSM-IV adult ADHD in the World Health Organization World Mental Health Surveys. ADHD Atten Deficit Hyperactivity Disorders 9(1):47–65

    Article  Google Scholar 

  3. Biedermana J et al (2010) How persistent is ADHD? A controlled 10-year follow-up study of boys with ADHD. Psychiatry Res 177:299–304

    Article  Google Scholar 

  4. Bellato A et al (2020) Is autonomic nervous system function atypical in attention deficit hyperactivity disorder (ADHD)? A systematic review of the evidence. Neurosci Biobehavioral Reviews 108:182–206

    Article  CAS  Google Scholar 

  5. Arnsten AFT, Pliszka SR (2011) Catecholamine influences on prefrontal cortical function: relevance to treatment of attention deficit/hyperactivity disorder and related disorders. Pharmacol Biochem Behav 99(2):211–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Castellanos FX, Proal E (2012) Large-scale brain systems in ADHD: beyond the prefrontal–striatal model. Trends Cogn Sci 16(1):17–26

    Article  PubMed  Google Scholar 

  7. Moll G et al (2000) Deficient intracortical inhibition in drug-naive children with attention-deficit hyperactivity disorder is enhanced by methylphenidate. Neurosci Lett 284(1):121–125

    Article  CAS  PubMed  Google Scholar 

  8. Gilbert DL et al (2019) Motor cortex inhibition and modulation in children with ADHD. Neurology 93(6):e599–e610

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gilbert DL et al (2011) Motor cortex inhibition: a marker of ADHD behavior and motor development in children. Neurology 76(7):615–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stahl SM (2010) Mechanism of action of alpha 2A-adrenergic agonists in attention-deficit/hyperactivity disorder with or without oppositional symptoms. J Clin Psychiatry 71(3):223–224

    Article  CAS  PubMed  Google Scholar 

  11. Sibley M et al (2014) Pharmacological and psychosocial treatments for adolescents with ADHD: an updated systematic review of the literature. Clin Psychol Rev 34:218–232

    Article  PubMed  Google Scholar 

  12. Shier AC et al (2013) Pharmacological treatment of attention deficit hyperactivity disorder in children and adolescents: clinical strategies. J Cent Nerv Syst Dis 5:1–17

    Article  CAS  PubMed  Google Scholar 

  13. Chueh T-Y et al (2022) Effects of a single bout of moderate-to-vigorous physical activity on executive functions in children with attention-deficit/hyperactivity disorder: a systematic review and meta-analysis. Psychol Sport Exerc 58:102097

    Article  Google Scholar 

  14. Tsai Y et al (2021) Dose-response effects of acute aerobic exercise intensity on inhibitory control in children with attention deficit/hyperactivity disorder. Front Hum Neurosci 15:617596

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yu C-L et al (2020) The effects of acute aerobic exercise on inhibitory control and resting state heart rate variability in children with ADHD. Sci Rep 10(1):19958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Aston-Jones G (2005) J.D. Cohen AN INTEGRATIVE THEORY OF LOCUS COERULEUS-NOREPINEPHRINE FUNCTION: adaptive gain and optimal performance. Annu Rev Neurosci 28 28, 2005 p403–450

    Article  Google Scholar 

  17. Pontifex MB et al (2019) A primer on investigating the after effects of acute bouts of physical activity on cognition. Psychol Sport Exerc 40:1–22

    Article  Google Scholar 

  18. Poe GR et al (2020) Locus coeruleus: a new look at the blue spot. Nat Rev Neurosci 21(11):644–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nicolini C et al (2021) Understanding the neurophysiological and molecular mechanisms of exercise-induced neuroplasticity in cortical and descending motor pathways: where do we stand? Neuroscience 457:259–282

    Article  CAS  PubMed  Google Scholar 

  20. Real C et al (2010) Exercise-induced plasticity of AMPA-type glutamate receptor subunits in the rat brain. Brain Res 1363:63–71

    Article  CAS  PubMed  Google Scholar 

  21. McDonnell M et al (2013) A single bout of aerobic exercise promotes motor cortical neuroplasticty. J Appl Physiol 114:1174–1182

    Article  PubMed  Google Scholar 

  22. Morris TP et al (2020) Light aerobic exercise modulates executive function and cortical excitability. Eur J Neurosci 51(7):1723–1734

    Article  PubMed  Google Scholar 

  23. Singh AM et al (2014) Aerobic exercise modulates intracortical inhibition and facilitation in a nonexercised upper limb muscle. BMC Sports Sci Med Rehabilitation 6:23

    Article  Google Scholar 

  24. Moll G, Heinrich H, Rothenberger A (2003) Methylphenidate and intracortical excitability: opposite effects in healthy subjects and attention-deficit hyperactivity disorder. Acta Psychiatr Scand 107(1):69–72

    Article  CAS  PubMed  Google Scholar 

  25. Gilbert DL et al (2006) Comparison of the inhibitory and excitatory effects of ADHD medications methylphenidate and atomoxetine on motor cortex. Neuropsychopharmacology 31(2):442–449

    Article  CAS  PubMed  Google Scholar 

  26. Chang YK et al (2012) Effect of acute exercise on executive function in children with attention deficit hyperactivity disorder. Arch Clin Neuropsychol 27(2):225–237

    Article  PubMed  Google Scholar 

  27. Chuang L-Y et al (2015) Effects of acute aerobic exercise on response preparation in a Go/No Go Task in children with ADHD: an ERP study. J Sport Health Sci 4(1):82–88

    Article  Google Scholar 

  28. Benzing V, Chang Y-K, Schmidt M (2018) Acute Physical Activity enhances executive functions in children with ADHD. Sci Rep 8(1):12382

    Article  PubMed  PubMed Central  Google Scholar 

  29. Suarez-Manzano S et al (2018) Acute and chronic effect of physical activity on cognition and behaviour in young people with ADHD: a systematic review of intervention studies. Res Dev Disabil 77:12–23

    Article  PubMed  Google Scholar 

  30. Borg G (1982) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14:377–381

    Article  CAS  PubMed  Google Scholar 

  31. Ludyga S et al (2020) The Acute effects of Aerobic Exercise on Cognitive Flexibility and Task-Related Heart Rate Variability in Children with ADHD and healthy controls. J Atten Disord 24(5):693–703

    Article  PubMed  Google Scholar 

  32. Piepmeier AT et al (2015) The effect of acute exercise on cognitive performance in children with and without ADHD. J Sport Health Sci 4(1):97–104

    Article  Google Scholar 

  33. Logan GD, Cowan WB, Davis KA (1984) On the ability to inhibit simple and choice reaction time responses: a model and a method. J Exp Psychol Hum Percept Perform 10(2):276

    Article  CAS  PubMed  Google Scholar 

  34. Smith P et al (2013) A comparison of the Cambridge Automated Neuropsychological Test Battery (CANTAB) with traditional neuropsychological testing instruments. J Clin Exp Neuropsychol 35(3):319–328

    Article  PubMed  Google Scholar 

  35. Gau SS, Shang CY (2010) Executive functions as endophenotypes in ADHD: evidence from the Cambridge Neuropsychological Test Battery (CANTAB). J Child Psychol Psychiatry 51(7):838–849

    Article  PubMed  Google Scholar 

  36. Gau SS et al (2009) Executive function in adolescence among children with attention-deficit/hyperactivity disorder in Taiwan. J Dev Behav Pediatr 30(6):525–534

    Article  PubMed  Google Scholar 

  37. Kuo H et al (2023) A single bout of aerobic exercise modulates motor learning performance and cortical excitability in humans. Int J Clin Health Psychol 23(1):100333

    Article  PubMed  Google Scholar 

  38. Grundey J et al (2013) Cortical excitability in smoking and not smoking individuals with and without nicotine. Psychopharmacology 229(4):653–664

    Article  CAS  PubMed  Google Scholar 

  39. Ziemann U et al (1996) Effects of antiepileptic drugs on motor cortex excitability in humans: a transcrnial magnetic stimulation study. Ann Neurol 40:367–378

    Article  CAS  PubMed  Google Scholar 

  40. Kujirai T et al (1993) Cortical inhibition in human motor cortex. J Physiol 471:501–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ilić TV et al (2002) Short-interval paired-pulse inhibition and facilitation of human motor cortex: the dimension of stimulus intensity. J Physiol 545(1):153–167

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ziemann U et al (1998) Dextromethorphan decreases the excitability of the human motor cortex. Neuroplogy 51:1320–1324

    Article  CAS  Google Scholar 

  43. Butzbach M et al (2019) Basic processes as foundations of cognitive impairment in adult ADHD. J Neural Transm 126(10):1347–1362

    Article  PubMed  Google Scholar 

  44. Smith A et al (2014) The influence of a single bout of aerobic exercise on short-interval intracortical excitability. Exp Brain Res 232:1875–1882

    Article  PubMed  Google Scholar 

  45. Yamazaki Y et al (2019) Acute low-intensity aerobic exercise modulates intracortical inhibitory and excitatory circuits in an exercised and a non-exercised muscle in the primary motor cortex. Front Physiol 7:1361

    Article  Google Scholar 

  46. Richter MM et al (2007) Cortical excitability in adult patients with attention-deficit/hyperactivity disorder (ADHD). Neurosci Lett 419(2):137–141

    Article  CAS  PubMed  Google Scholar 

  47. Hendy AM et al (2022) Acute effects of High-Intensity Aerobic Exercise on Motor cortical excitability and inhibition in sedentary adults. Front Psychol 13:814633

    Article  PubMed  PubMed Central  Google Scholar 

  48. Dutra TG, Baltar A, Monte-Silva KK (2016) Motor cortex excitability in attention-deficit hyperactivity disorder (ADHD): a systematic review and meta-analysis. Res Dev Disabil 56:1–9

    Article  CAS  PubMed  Google Scholar 

  49. Heijnen S et al (2015) Neuromodulation of Aerobic Exercise-A Review. Front Psychol 6:1890

    PubMed  Google Scholar 

  50. Nitsche MA et al (2005) Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex. J Physiol 568(Pt 1):291–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Meeusen R, De Meirleir K (1995) Exercise and brain neurotransmission. Sports Med 20(3):160–188

    Article  CAS  PubMed  Google Scholar 

  52. Hoerbelt P, Lindsley TA, Fleck MW (2015) Dopamine directly modulates GABAA receptors. J Neurosci 35(8):3525–3536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Di Mauro M et al (2008) Noradrenaline modulates neuronal responses to GABA in vestibular nuclei. Neuroscience 153(4):1320–1331

    Article  PubMed  Google Scholar 

  54. Lin TW, Kuo YM (2013) Exercise benefits brain function: the monoamine connection. Brain Sci 3(1):39–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gorrell S, Shott ME, Frank GKW (2022) Associations between aerobic exercise and dopamine-related reward-processing: informing a model of human exercise engagement. Biol Psychol 171:108350

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The study is supported by the National Science and Technology Council, Taiwan, grant “112-2314-B-002-119-MY3”.

Author information

Authors and Affiliations

Authors

Contributions

H.I.K., M.N. and J.C.C. designed the work. H.I.K., J.C.C., and J.L.S. conducted the work. H.I.K., and J.L.S. prepared the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Hsiao-I Kuo.

Ethics declarations

Conflict of interest

The authors declare that there are no competing financial interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuo, HI., Sun, JL., Nitsche, M. et al. An investigation of the acute effects of aerobic exercise on executive function and cortical excitability in adolescents with attention deficit hyperactivity disorder (ADHD). Eur Child Adolesc Psychiatry (2024). https://doi.org/10.1007/s00787-024-02467-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00787-024-02467-x

Keywords

Navigation