Skip to main content
Log in

Multistage interband cascade photovoltaic devices with a bandgap of 0.23 eV operating above room temperature

  • Invited Article
  • Condensed Matter Physics
  • Published:
Chinese Science Bulletin

Abstract

Interband cascade (IC) photovoltaic (PV) device structures, consisting of multiple discrete InAs/GaSb superlattice absorbers sandwiched between electron and hole barriers, were grown by molecular beam epitaxy. Details of the molecular beam epitaxy growth and material characterization of the structures are presented. The discrete absorber architecture enables certain advantages, such as high open-circuit voltage, high collection efficiency, high operating temperature, and smooth integration of cascade stages with different bandgaps. The two- and three-stage ICPV devices presented in this article operate at room temperature with substantial open-circuit voltages at a cutoff wavelength of 5.3 μm (corresponding to a bandgap of 0.23 eV), the longest ever reported for room temperature PV devices. The device characteristics indicate a high level of current matching and demonstrate the advantages of the interband cascade approach in thermophotovoltaic cell design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wilt D, Chubb D, Wolford D et al (2007) Thermophotovoltaics for space power applications. In: Proceedings of seventh world conference on thermophotovoltaic generation of electricity, vol 890. American Institute of Physics, College Park, pp 335–345

  2. Teofilo VL, Choong P, Chang J et al (2008) Thermophotovoltaic energy conversion for space. J Phys Chem C 112:7841–7845

    Article  Google Scholar 

  3. Datas A, Algora C (2013) Global optimization of solar thermophotovoltaic systems. Prog Photovolt Res Appl 21:1040–1055

    Google Scholar 

  4. Chan WR, Bermel P, Pilawa-Podgurski RCN et al (2013) Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics. Proc Natl Acad Sci USA 110:5309–5314

    Article  Google Scholar 

  5. Coutts TJ, Ward JS (1999) Thermophotovoltaic and photovoltaic conversion at high-flux densities. IEEE Trans Electron Dev 46:2145–2153

    Article  Google Scholar 

  6. Mauk MG, Andreev VM (2003) Gasb-related materials for TPV cells. Semicond Sci Technol 18:S191–S201

    Article  Google Scholar 

  7. Zenker M, Heinzel A, Stollwerck G et al (2001) Efficiency and power density potential of combustion-driven thermophotovoltaic systems using GaSb photovoltaic cells. IEEE Trans Electron Dev 48:367–376

    Article  Google Scholar 

  8. Su N, Fay P, Sinharoy S et al (2007) Characterization and modeling of InGaAs/InAsP thermophotovoltaic converters under high illumination intensities. J Appl Phys 101:064511

    Article  Google Scholar 

  9. Yang RQ, Li L, Zhao L et al (2013) Recent progress in development of InAs-based interband cascade lasers. In: Belyanin AA, Smowton PM, eds Novel in-plane semiconductor lasers XII, Proc SPIE, vol 8640. SPIE Photonics West, San Francisco, p 86400q

    Chapter  Google Scholar 

  10. Yang RQ (2013) Interband cascade (IC) lasers. In: Baranov A, Tournie E (eds) Semiconductor lasers: fundamentals and applications. Woodhead Publishing Limited, Cambridge

    Google Scholar 

  11. Yang RQ, Tian Z, Klem JF et al (2010) Interband cascade photovoltaic devices. Appl Phys Lett 96:063504

    Article  Google Scholar 

  12. Lotfi H, Hinkey RT, Li L et al (2013) Narrow-bandgap photovoltaic devices operating at room temperature and above with high open-circuit voltage. Appl Phys Lett 102:211103

    Article  Google Scholar 

  13. Hinkey RT, Tian Z-B, Rassel SMSS et al (2013) Interband cascade photovoltaic devices for conversion of mid-IR radiation. IEEE J Photovolt 3:745–752

    Article  Google Scholar 

  14. Bracker AS, Yang MJ, Bennett BR et al (2000) Surface reconstruction phase diagrams for InAs, AlSb, and GaSb. J Cryst Growth 220:384–392

    Article  Google Scholar 

  15. Tian Z, Hinkey RT, Yang RQ et al (2012) Interband cascade infrared photodetectors with enhanced electron barriers and p-type superlattice absorbers. J Appl Phys 111:024510

    Article  Google Scholar 

  16. Keay JC, Li L, Brunski DB et al (2011) Suppression of slip-line defect formation in gasb substrates during thermal desorption of oxide layers. In: Poster session presented at 28th North American molecular beam epitaxy, San Diego

Download references

Acknowledgments

The authors are grateful to Yuchao Jiang, Lihua Zhao, Chao Niu, and Ernest S. Sanchez for technical assistance. This study was supported in part by the DoE EPSCoR program (DE-SC0004523) and C-SPIN, the Oklahoma/Arkansas MRSEC (DMR-0520550).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Ye or Rui Q. Yang.

About this article

Cite this article

Ye, H., Lotfi, H., Li, L. et al. Multistage interband cascade photovoltaic devices with a bandgap of 0.23 eV operating above room temperature. Chin. Sci. Bull. 59, 950–955 (2014). https://doi.org/10.1007/s11434-014-0144-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-014-0144-6

Keywords

Navigation