Skip to main content
Log in

Recent advances in organic solar cells: materials, design, and performance

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Organic solar cells have emerged as promising alternatives to traditional inorganic solar cells due to their low cost, flexibility, and tunable properties. This mini review introduces a novel perspective on recent advancements in organic solar cells, providing an overview of the latest developments in materials, device architecture, and performance optimization. In contrast to existing literature, this review places a strong emphasis on the role of molecular engineering in achieving high power conversion efficiencies. It delves into the latest materials used in organic solar cells, including novel polymers and small molecules, showcasing their unique properties and potential for improved performance. Furthermore, the review explores cutting-edge device architectures, specifically tandem and multi-junction cells, which offer unprecedented opportunities for achieving higher efficiencies. The discussion on these advanced architectures highlights their potential and paves the way for future advancements in the field of organic solar cells. To maximize the performance of organic solar cells, this review also presents recent strategies for performance optimization, focusing on interface engineering, morphological control, and stability enhancement. By providing a comprehensive analysis of these strategies, the review enables readers to gain a deeper understanding of the underlying principles and techniques driving the improvement in device performance. By introducing this novel perspective on recent developments, this mini review offers researchers and practitioners a valuable resource for staying up-to-date with the latest advancements in organic solar cells. It not only presents the current state of the field but also identifies future directions and challenges, fostering further research and innovation in this rapidly evolving field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Y. Zhang, L. Zuo, L. Ding, H. Wu, Organic solar cells based on small molecules. J. Mater. Chem. A 9(9), 4942–4956 (2021)

    Google Scholar 

  2. C.J. Brabec, S. Gowrisanker, J.J. Halls, D. Laird, S. Jia, S.P. Williams, Polymer–fullerene bulk-heterojunction solar cells. Adv. Mater. 22(34), 3839–3856 (2010)

    Article  Google Scholar 

  3. P. Chaudhary, P. Kumar, P. Kumar, I. Kaur, Organic solar cells: a review on recent advances and challenges. Renew. Sustain. Energy Rev. 139, 110686 (2021)

    Google Scholar 

  4. G. Li, R. Zhu, Y. Yang, Polymer solar cells. Nat. Photonics 6(3), 153–161 (2012)

    Article  ADS  Google Scholar 

  5. F.C. Krebs, Fabrication and processing of polymer solar cells: a review of printing and coating techniques. Sol. Energy Mater. Sol. Cells 93(4), 394–412 (2009)

    Article  Google Scholar 

  6. Z. He, B. Xiao, F. Liu, H. Wu, Y. Yang, S. Xiao, Y. Cao, single-junction polymer solar cells exceeding 10% power conversion efficiency. Adv. Mater. 27(6), 1035–1041 (2015)

    Article  Google Scholar 

  7. Y. Chang, C. Chu, Y. Yang, X. Gong, Recent advances in roll-to-roll fabrication of polymer solar cells. Adv. Mater. 26(36), 6342–6363 (2014)

    Google Scholar 

  8. Y. Liang, Z. Xu, J. Xia, S.T. Tsai, Y. Wu, G. Li, Y. Yang, For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv. Mater. 22(20), E135–E138 (2010)

    Article  Google Scholar 

  9. J. Hou, O. Inganäs, R.H. Friend, F. Gao, Organic solar cells based on non-fullerene acceptors. Nat. Mater. 17(2), 119–128 (2018)

    Article  ADS  Google Scholar 

  10. X. Chen, X. Guo, S. Zhang, Y. Li, F. Liu, L. Huo, Y. Yang, Ladder-type polymer PT-TQBD enables efficient solar cells with a very low energy loss. Nat. Energy 3(5), 422–427 (2018)

    ADS  Google Scholar 

  11. W. Zhao, S. Li, H. Yao, S. Zhang, Y. Zhang, B. Yang, J. Hou, Molecular optimization enables over 13% efficiency in organic solar cells. J. Am. Chem. Soc. 139(21), 7148–7151 (2017)

    Article  Google Scholar 

  12. G. Li, Y. Yang, P. Smith, High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater. 4(11), 864–868 (2005)

    Article  ADS  Google Scholar 

  13. L. Ye, Y. Xiong, W. Li, S. Li, Y. Wu, J. Hou, High-performance multiple-donor bulk heterojunction solar cells. Nat. Photonics 9(10), 662–667 (2015)

    Google Scholar 

  14. J. Kim, S. Hong, K. Lee, H. Kang, H. Kim, T.W. Lee, Versatile non-fullerene acceptors for organic photovoltaics. Nat. Commun. 9(1), 1–11 (2018)

    ADS  Google Scholar 

  15. B. Kan, H. Feng, X. Wan, X. Liu, W. Ni, S. Yang, Y. Wang, C. Li, L. Feng, Y. Chen et al., A series of simple oligomer-like small molecules based on diketopyrrolopyrrole for solution-processed solar cells with high efficiency. J. Am. Chem. Soc. 136(42), 15529–15532 (2014)

    Article  Google Scholar 

  16. L. Mao, Z. Xie, L. Wang, F. Xie, H. Chen, Zinc phthalocyanine/C60 bilayer heterojunction photovoltaic devices. Appl. Phys. Lett. 89(9), 093504 (2006)

    ADS  Google Scholar 

  17. Y. Li, L. Ye, W. Zhao, S. Li, S. Zhang, S. Mukherjee, H. Ade, J. Hou, A molecular nematic liquid crystalline material for high-performance organic photovoltaics. Nat. Commun. 9(1), 1–9 (2018)

    ADS  Google Scholar 

  18. Z. He, C. Zhong, S. Su, M. Xu, H. Wu, Y. Cao, Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat. Photonics 6, 591–595 (2012)

    Article  ADS  Google Scholar 

  19. Y. Liu, Y. Chang, C. Chao, C. Wang, W. Lee, H. Chen, A.J. Heeger, A high-mobility electron-transporting polymer for printed transistors. Nature 466, 622–626 (2010)

    Google Scholar 

  20. Y. Lin, F. Zhao, Y. Wu, K. Jiang, J. Zhu, H. Ade, H. Yan, A chlorinated acceptor for high-efficiency organic photovoltaics. Nat. Energy 3, 748–754 (2018)

    Google Scholar 

  21. F. Liu, M. Zhang, Y. Yang et al., Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat. Commun. 10, 1095 (2019)

    ADS  Google Scholar 

  22. Y. Zhang, X. Zhan, Non-fullerene acceptors for organic solar cells. Nat. Rev. Mater. 2, 190838 (2019)

    Google Scholar 

  23. N. Gasparini, T. Näreoja, D. Pankov et al., 3D molecular ordering of a high-performance solution-processed small-molecule organic semiconductor. Nat. Mater. 15, 999–1005 (2016)

    Google Scholar 

  24. C. Yan, S. Barlow, Z. Wang et al., Non-fullerene acceptor with low energy loss for organic solar cells with efficiency over 16%. Nat. Commun. 9, 5357 (2018)

    ADS  Google Scholar 

  25. G. Li, V. Shrotriya, J. Huang et al., High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater. 4, 864–868 (2005)

    Article  ADS  Google Scholar 

  26. Y. Yang, Z. Zhang, H. Bin et al., Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nat. Commun. 7, 13751 (2016)

    Google Scholar 

  27. S. Zhang, L. Ye, J. Hou, A wide bandgap polymer with a deep HOMO level enables 14.2% efficiency in polymer solar cells. J. Am. Chem. Soc. 139, 2387–2390 (2017)

    Article  Google Scholar 

  28. Y. Lin, X. Zhan, Y. Yang, Non-fullerene acceptors for organic solar cells. Nat. Rev. Mater. 3, 18003 (2018)

    Article  ADS  Google Scholar 

  29. M. Zhang, Y. Wang, T. Zhang, Z. Ling, J. Liu, L. Feng, X. Guo, Z. Wei, W. Ma, A non-fullerene acceptor with superior properties: wide-bandgap, low-LUMO, and high mobility. Angew. Chem. Int. Ed. 57, 14717–14721 (2018)

    Google Scholar 

  30. C.J. Brabec, S. Gowrisanker, J.J.M. Halls, D. Laird, S. Jia, S.P. Williams, Polymer-fullerene bulk-heterojunction solar cells. Adv. Mater. 22, 3839–3856 (2010)

    Article  Google Scholar 

  31. C.J. Brabec, N.S. Sariciftci, J.C. Hummelen, Plastic solar cells. Adv. Funct. Mater. 11, 15–26 (2001)

    Article  Google Scholar 

  32. M.A. Green, K. Emery, D.L. King, S. Igari, W. Warta, Solar cell efficiency tables (version 37). Prog. Photovolt. 19, 84–107 (2011)

    Article  Google Scholar 

  33. Z. He, C. Zhong, S. Su, M. Xu, H. Wu, W. Cao, Y. Huang, Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Adv. Mater. 24, 1740–1743 (2012)

    Google Scholar 

  34. L. Hu, M. Wu, G. Wang, X. Zhou, Y. Liu, Y. Ma, X. Yang, Y. Cao, Polymeric photovoltaic cells based on conjugated polymers incorporating palladium or platinum complex units. Adv. Mater. 23, 1482–1486 (2011)

    Google Scholar 

  35. Y. Cui, H. Yao, T. Zhang, Y. Wang, K. Xian, Y. Xu, L. Hong, J. Wei, C. An, J. Hou, Y. Li, Y. Chen, High-performance tandem organic solar cells with complementary absorption bands. Nat. Commun. 9, 2572 (2018)

    ADS  Google Scholar 

  36. S. Chen, E. Mosconi, Y. Fang, M. Xiao, H. Wang, Y. Zhou, Y. Zhao, Y. Gao, J. Huang, Perovskite/perovskite tandem solar cells. Nat. Mater. 17, 703–709 (2018)

    ADS  Google Scholar 

  37. X. Yang, P. Cheng, L. Wang, G. Zhou, W. Ma, J. Zhao, H. Ade, H. Yan, F. Gao, Triple-junction polymer solar cells incorporating both fluorescence and phosphorescence. Adv. Energy Mater. 9, 1900808 (2019)

    Google Scholar 

  38. H. Yao, Y. Chen, Design and synthesis of a low-bandgap small molecule acceptor for efficient polymer solar cells with high open-circuit voltage. Energy Environ. Sci. 11, 1898–1904 (2018)

    Google Scholar 

  39. M.A. Green, A. Ho-Baillie, Tandem solar cells: review of design principles and roadmap to commercialization. npj Flex Electron. 1, 1–12 (2017)

    Google Scholar 

  40. S. Albrecht, C.J. Brabec, Tandem solar cells: the frontier of crystalline silicon photovoltaics. Adv. Mater. 29, 1606480 (2017)

    Google Scholar 

  41. J.F. Geisz, D.J. Friedman, J.S. Ward, W. Olavarria, I. Garcia, M.A. Steiner, T. Moriarty, J.T. Kiehl, M.J. Romero, Progress toward 50% efficiency for mechanically stacked multijunction solar cells. IEEE J. Photovolt. 7(6), 1487–1494 (2017)

    Google Scholar 

  42. U. Würfel, S. Rein, Tandem Solar Cells: Fundamentals, Design, and Applications (John Wiley & Sons, New York, 2015)

    Google Scholar 

  43. O.D. Miller, C. Xu, G.J. Rey, P. Ireland, D. Johnstone, E.C. Warmann, M.L. Lee, M.A. Green, K.R. Catchpole, Cost-effective four-terminal perovskite-silicon tandem solar cells enabling ultrahigh efficiency. Joule 4, 510–522 (2020)

    Google Scholar 

  44. M. Dupuis, E.E. Looney, Multi-junction and tandem solar cells for space applications, in 2019 IEEE Aerospace Conference, IEEE, pp 1–16 ( 2019)

  45. W. Li, A. Furlan, K.H. Hendriks, Material science of organic solar cells. Adv. Energy Mater. 6(20), 1600377 (2016)

    Google Scholar 

  46. P. Cheng, X. Zhan, Y. Wu, Interface engineering for organic electronics. Adv. Mater. 30(39), 1707005 (2018)

    Google Scholar 

  47. N. Li, C.J. Brabec, Air-stable and efficient tandem organic solar cells based on zinc phthalocyanine and a fullerene derivative. Adv. Energy Mater. 9(5), 1802989 (2019)

    Google Scholar 

  48. S. Li, F. Liu, T.P. Russell, Solution-processed semiconducting polymer bulk heterojunctions: from morphology control to improved electronic performance. Acc. Chem. Res. 49(11), 2199–2207 (2016)

    Google Scholar 

  49. F. De Rossi, A. Giuri, V. D’Innocenzo, A. Luzio, G. Grancini, A. Petrozza, Light management in organic solar cells. Chem. Soc. Rev. 49(13), 4533–4553 (2020)

    Google Scholar 

  50. A. Facchetti, π-Conjugated polymers for organic electronics and photovoltaic cell applications. Chem. Mater. 23(3), 733–758 (2011)

    Article  Google Scholar 

  51. I. Salzmann, G. Heimel, Interface engineering in organic field-effect transistors. Chem. Rev. 116(23), 13714–13751 (2016)

    Google Scholar 

  52. S. Liu, S. Wang, H. Zhou, Interface engineering of metal oxide electrodes for high-performance energy storage devices. Energy Storage Mater. 21, 291–308 (2019)

    Google Scholar 

  53. Z. Li, J. Song, M. Sun, X. Hu, W. Zhu, Morphology control of organic solar cells by mixed solvent towards high performance. Org. Electron. 64, 44–51 (2019)

    Google Scholar 

  54. L. Zhou, K. Zhou, J. Wang, W. Ma, H. Zhang, Polymer additives for efficient organic solar cells: recent developments and future prospects. Adv. Mater. 30(42), 1802102 (2018)

    Google Scholar 

  55. N. Li, F. Zhang, C. Liu, X. Zhan, Efficient and stable polymer solar cells based on a polymer encapsulation strategy. ACS Appl. Mater. Interfaces 10(3), 2433–2440 (2018)

    Google Scholar 

  56. C. Cui, C. Li, J. Zhang, Y. Wang, Z. Liu, Y. Li et al., Enhancing stability and efficiency of organic solar cells through the molecular engineering of an alkylated indacenodithienothiophene-based donor. J. Mater. Chem. A 8(3), 1423–1431 (2020)

    Google Scholar 

  57. Z. Li, Y. Lin, W. Li, P. Cheng, F. Liu, X. Hu et al., A chlorinated acceptor with improved electron mobility and stability for high-performance organic solar cells. Adv. Mater. 29(19), 1605658 (2017)

    Google Scholar 

  58. Y. Zhou, C. Fuentes-Hernandez, T.M. Khan, J. Liu, J. Hsu, J. Shim et al., Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 363(6422), 265–270 (2019)

    Google Scholar 

  59. Y. Li, Z. Zhao, H. Li, J. Fang, Y. Liu, Y. Zhang et al., Spray-coating fabrication of efficient organic solar cells with enhanced uniformity and reproducibility. Sol. Energy Mater. Sol. Cells 209, 110464 (2020)

    Google Scholar 

  60. W. Li, Y. Zhang, J. Zhao, Interface engineering for organic electronics. Adv. Mater. 29(7), 1602546 (2017)

    Google Scholar 

  61. Z. Li et al., A star-shaped electron acceptor with alkylthio side chains for efficient organic solar cells with reduced energy loss. J. Mater. Chem. A 7(28), 16843–16849 (2019)

    ADS  Google Scholar 

  62. W. Liu et al., Efficient and stable organic solar cells based on an n-type small molecule acceptor with a high electron mobility. J. Mater. Chem. A 8(29), 14402–14410 (2020)

    Google Scholar 

  63. G. Zhang et al., Polymer acceptors with minimized absorption overlap for efficient organic solar cells with high stability. Energy Environ. Sci. 14(2), 1113–1123 (2021)

    Google Scholar 

  64. H. Zhou et al., A polymer tandem solar cell with 10.6% power conversion efficiency. Nat. Commun. 5, 1–8 (2014)

    ADS  Google Scholar 

  65. M. Saliba et al., Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9(6), 1989–1997 (2016)

    Article  Google Scholar 

  66. A. Abate, T. Leijtens, S. Pathak, H.J. Snaith, Tandem solar cells: advances and challenges. Nat. Energy 5(7), 596–605 (2020)

    Google Scholar 

  67. P. Pandit, A. Chandak, P. Shrivastava, Environmental effects on the performance of solar photovoltaic systems: a review. Energy Convers. Manage. 233, 113758 (2021)

    Google Scholar 

  68. L.M. Shaker, A.A. Al-Amiery, W.K. Al-Azzawi, A clearer vision: a mini-review on contact lenses. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01222-w

    Article  Google Scholar 

  69. L.M. Shaker, W.K. Al-Azzawi, A. Al-Amiery, M.S. Takriff, W.N.R. Wan Isahak, Highly transparent antibacterial hydrogel-polymeric contact lenses doped with silver nanoparticles. J. Vinyl Addit. Technol. (2023). https://doi.org/10.1002/vnl.21995

    Article  Google Scholar 

  70. L.M. Shaker, S. Abdulhadi, W.K. Al-Azzawi, A. Alamiery, M.S. Takriff, W.N.R.W. Isahak, Colorless poly (vinyl pyrrolidone) hydrogel contact lenses synergized with silver nanoparticles. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01176-z

    Article  Google Scholar 

  71. L.M. Shaker, A.A. Alamiery, M. Takriff, W.N.R. Wan Isahak, Nano-titanium oxide in polymeric contact lenses. Nanomanufacturing 2(3), 71–81 (2022)

    Article  Google Scholar 

  72. L.M. Shaker, A. Alamiery, M. Takriff, W.N.R. Wan Isahak, Novel Blue-wavelength-blocking contact lens with Er3+/TiO2 NPs: manufacture and characterization. Nanomaterials 11(9), 2190 (2022)

    Article  Google Scholar 

  73. L.M. Shaker, A. Al-Adili, A.A. Al-Amiery, Human eye response to the iris diameter variation at polychromatic light programmatically. J. Phys: Conf. Ser. 1795(1), 012025 (2021)

    Google Scholar 

  74. S.L.M. Shaker, S. Osamah, A.A. Al-Amiery, ingle-mode optical fibers coupling: study of the field of view. IOP Conf. Series: Mater. Sci. Eng. 1045(1), 012009 (2021)

    Article  Google Scholar 

  75. L.M. Shaker, A.A. Al-Amiery, A.A.H. Kadhum, M.S. Takriff, Manufacture of contact lens of nanoparticle-doped polymer complemented with zemax. Nanomaterials 10(10), 2028 (2020)

    Article  Google Scholar 

  76. L.M. Shaker, A.H. Al-Hamdani, A.A. Al-Amiery, Vision improvement using titanium dioxide nanoparticles-doped PMMA for contact lenses. Eng. Technol. J. 38(5), 681–689 (2020)

    Article  Google Scholar 

  77. L.M. Shaker, A.H. Al-Hamdani, A.A. Al-Amiery, Nano-particle doped polymers to improve contact lenses optical quality. Int. J. Nanoelectron. Mater. 13(1), 1–12 (2020)

    Google Scholar 

  78. L.M. Shaker, A.H. Al-Hamdani, A.A. Al-Amiery, A comparative study of optical quality for different polymeric contact lenses. J. Phys: Conf. Ser. 1234(1), 012042 (2020)

    Google Scholar 

  79. L.M. Shaker, A.H. Al-Hamdani, A.A. Al-Amiery, Plastic materials for modifying the refractive index of contact lens overview. Res. Dev. Mater. Sci. 11, 2–1 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Alamiery.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahdi, A.S., Shaker, L.M. & Alamiery, A. Recent advances in organic solar cells: materials, design, and performance. J Opt 53, 1403–1419 (2024). https://doi.org/10.1007/s12596-023-01262-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-023-01262-2

Keywords

Navigation