Skip to main content
Log in

Phase transition in the subducted oceanic lithosphere and generation of the subduction zone magma

  • Progress
  • Published:
Chinese Science Bulletin

Abstract

Two metamorphic processes, i.e. subsolidus dehydration and partial melting occurring in MORB, metasediments and peridotite of subducted oceanic lithosphere are discussed on the basis of available experimental work and phase equilibrium modeling. Phase diagrams of hydrous MORB show that in most cold subduction P-T (pressure-temperature) regimes a large portion of water in the basic layer has released below the onset of blueschist facies (< 20 km), and at a depth (60–70 km) of transition from lawsonite blueschist to lawsonite eclogite facies through glaucophane dehydration; only a smaller portion of water will escape from the slab through dehydration of lawsonite and chloritoid in the depth range suitable for arc magma formation; and a very small portion of water stored in lawsonite and phengite will fade into the deeper mantle. The role of amphibole for arc magma formation is still arguable. In cold subduction P-T regimes, the dehydration of chlorite and talc in Al-poor metasediments, and chloritoid and carpholite in Al-rich metapelites at a depth around 80–100 km will make some contributions to the formation of arc magma. Comparatively, dehydration of serpentine in hydrated peridotite occurs at depths of 120–180 km, playing an important role in the arc magmatism. Subduction of oceanic crust along warm P-T regimes will cross the solidi at a depth over 80 km, resulting in partial melting under fluid-saturated and fluid-absent conditions in the metasediments involving biotite and phengite, and in the basic rocks involving epidote and amphibole. The melt compositions of the basic crust are adakitic at pressures < 3.0 GPa, but become peraluminous granitic at higher pressures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Poli S, Schmidt M W. Petrology of subducted slabs. Ann Rev Earth Planet Sci, 2002, 30: 207–235

    Article  CAS  Google Scholar 

  2. Schmidt M W, Vielzeuf D, Auzanneau E. Melting and dissolution of subducting crust at high pressures: the key role of white mica. Earth Planet Sci Lett, 2004, 228: 65–84

    Article  CAS  Google Scholar 

  3. Nicolas A. Structures of Ophiolites and Dynamics of Oceanic Lithosphere. Dordrecht: Kluwer Academic Publishers, 1989. 367

    Google Scholar 

  4. Peacock S M, Wang K. Seismic consequences of warm versus cool subduction metamorphism: examples from Southwest and Northeast Japan. Science, 1999, 286: 937–939

    Article  PubMed  CAS  Google Scholar 

  5. Kirby S H. Taking the temperature of slabs. Nature, 2000, 403:31–34

    Article  PubMed  CAS  Google Scholar 

  6. Schmidt M W. Lawsonite: upper pressure stability and formation of higher density hydrous phases. Am Mineral, 1995, 80: 1286–1292

    CAS  Google Scholar 

  7. Schmidt M W, Poli S. The stability of lawsonite and zoisite at high pressures: experiments in CASH to 92 kbar and implications for the presence of hydrous phases in subducted lithosphere. Earth Planet Sci Lett, 1994, 124: 105–118

    Article  CAS  Google Scholar 

  8. Poli S, Schmidt MW. H2O transport and release in subduction zones: experimental constraints on basaltic and andesitic systems. J Geophys Res, 1995, 100: 22299–22314

    Article  CAS  Google Scholar 

  9. Schmidt M W, Poli S. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet Sci Lett, 1998, 163: 361–379

    Article  CAS  Google Scholar 

  10. Peacock S M. The importance of blueschist to eclogite dehydration reactions in subducting oceanic crust. Geol Soc Am Bull, 1993, 105:684–694

    Article  Google Scholar 

  11. Sorensen S S. Petrologic and geochemical comparison of the blueschist and greenschist units of the Catalina schist terrane, southern California. In: Evans B W, Brown E H, eds. Blueschists and Eclogites. Geol Soc Am Mem 164, 1986. 59–75

  12. Schmidt M W, Poli S. Generation of mobile components during subduction of oceanic crust. Treatise Geochem, 2003, 3: 567–591

    Article  Google Scholar 

  13. Schmidt MW. Experimental constraints on recycling of potassium from subducted oceanic crust. Science, 1996, 272: 1927–1930

    Article  PubMed  CAS  Google Scholar 

  14. Oh C W, Liou J G. A petrogenetic grid for eclogite and related facies under high-pressure metamorphism. The Island Arc, 1998, 7: 36–51

    Article  CAS  Google Scholar 

  15. Davies J H, Stevenson D J. Physical model of source region of subduction zone volcanic. J Geophys Res, 1992, 97: 2037–2070

    Article  Google Scholar 

  16. Hermann J, Green D H. Experimental constraints on high pressure melting in subducted crust. Earth Planet Sci Lett, 2001, 188:149–168

    Article  CAS  Google Scholar 

  17. Chopin C. Talc-phengite: a widespread assemblage in high-grade pelitic blueschists of the western Alps. J Petrol, 1981, 22: 628–650

    CAS  Google Scholar 

  18. Schreyer W. Experimental studies on metamorphism of crustal rocks under mantle pressures. Mineral Mag, 1988, 52: 1–26

    Article  CAS  Google Scholar 

  19. El-Shazly A K, Liou J G. Glaucophane chloritoid-bearing assemblages from NE Oman: petrologic significance and a petrogenetic grid for high-P metapelites. Contrib Mineral Petrol, 1991, 107: 180–201

    Article  CAS  Google Scholar 

  20. Theye T, Seidel E, Vidal O. Carpholite, sudoite and chloritoid in low-grade high-pressure metapelites from Crete and the Peloponnese, Greece. Euro J Mineral, 1992, 4: 487–507

    CAS  Google Scholar 

  21. Wei C J, Song S G. Chloritoid-glaucophane schist in the north Qilian orogen, NW China: Phase equilibria and P-T path from garnet zonation. J Metamorphic Geol, 2008, 26: 301–316

    Article  CAS  Google Scholar 

  22. Spear F S. Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths. Washington D C: Mineral Soc Ame, 1993. 337–392

    Google Scholar 

  23. Wei C J, Powell R. Phase relations in high-pressure metapelites in the system KFMASH (K2O-FeO-MgO-Al2O3-SiO2-H2O) with application to natural rocks. Contrib Mineral Petrol, 2003, 145: 301–315

    Article  CAS  Google Scholar 

  24. Wei C J, Powell R, Zhang L F. Eclogites from the south Tianshan, NW China: petrological characteristic and calculated mineral equilibria in the Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O system. J Meta Geol, 2003, 21: 163–180

    Article  CAS  Google Scholar 

  25. Nichols G T, Wyllie P J, Stern Ch R. Subduction zone melting of pelagic sediments constrained by melting experiments. Nature, 1994, 371: 785–788

    Article  CAS  Google Scholar 

  26. Ulmer P, Trommsdorff V. Phase relations of hydrous mantle subducting to 300 km. In: Fei Y W, Bertka C, Mysen B O, eds. Mantle Petrology: Field Observations and High Pressure Experimentation: A Tribute to Francis R. (Joe) Boyd. Geochem Soc Spec Publ, 1999. 6:259–281

  27. Wunder B. Equilibrium experiments in the system MgO-SiO2-H2O (MSH): stability fields of clinohumite-OH [Mg9Si4O16(OH)2], chondrodite-OH [Mg5Si2O8(OH)2] and phase A (Mg7Si2O8(OH)6). Contrib Mineral Petrol, 1998, 132: 111–120

    Article  CAS  Google Scholar 

  28. Ulmer P, Trommsdorff V. Serpentine stability to mantle depths and subduction related magmatism. Science, 1995, 268: 858–861

    Article  PubMed  CAS  Google Scholar 

  29. Fumagalli P, Stixrude L, Poli S, et al. The 10A phase: a high-pressure expandable sheet silicate stable during subduction of hydrated lithosphere. Earth Planet Sci Lett, 2001, 186: 125–141

    Article  CAS  Google Scholar 

  30. Kawamoto T, Hervig R L, Holloway J R. Experimental evidence for a hydrous transition zone in the early Earth’s mantle. Earth Planet Sci Lett, 1996, 143: 587–592

    Article  Google Scholar 

  31. Fumagalli P, Poli S. Phase relationships in hydrous peridotites at high pressure: preliminary results of multianvil experiments. Period Mineral, 1999, 68: 275–286

    Google Scholar 

  32. Spear F S, Kohn M J, Cheney J T. P-T paths from anatectic pelites. Contrib Mineral Petrol, 1999, 134: 17–32

    Article  CAS  Google Scholar 

  33. White R W, Powell R, Holland T J B. Calculation of partial melting equilibria in the system Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O (NCKFMASH). J Meta Geol, 2001, 19: 139–153

    Article  CAS  Google Scholar 

  34. Domanik K J, Holloway J R. The stability and composition of phengitic muscovite and associated phases from 5.5 to 11 GPa: Implications for deeply subducted sediments. Geochim Cosmochim Acta, 1996, 60: 4133–4150

    Article  CAS  Google Scholar 

  35. Vielzeuf D, Schmidt M W,. Melting relations in hydrous systems revisited: application to metapelites, metagreywackes and metabasalts. Contrib Mineral Petrol, 2001, 141: 251–267

    CAS  Google Scholar 

  36. Green D H, Ringwood A E. An experimental investigation of the gabbro to eclogite transformation and its petrological applications. Geochim Cosmochim Acta, 1967, 31: 767–833

    Article  CAS  Google Scholar 

  37. Vielzeuf D, Holloway J R. Experimental determination of the fluidabsent melting relations in the pelitic system. Contrib Mineral Petrol, 1988, 98: 257–276

    Article  CAS  Google Scholar 

  38. Ono S. Stability limits of hydrous minerals in sediment and mid-ocean ridge basalt compositions: implications for water transport in subduction zones. J Geophy Res, 1998, 103: 18253–18267

    Article  CAS  Google Scholar 

  39. Irifune T. Absence of an aluminous phase in the upper part of the Earth’s lower mantle. Nature, 1994, 370: 131–133

    Article  CAS  Google Scholar 

  40. Winther K T, Newton R C. Experimental melting of hydrous low-K tholeiite: evidence on the origin of Archean cratons. Bull Geol Soc Denmark, 1991, 39: 497–515

    Google Scholar 

  41. Wyllie P J, Wolf M B. Amphibolite dehydration melting: sorting out the solidus. In: Prichard H M, Alabaster T, Harris N B W, et al., eds. Magmatic Processes and Plate Tectonics. London: Geol Soc Spec Publ, 1993. 76: 405–416

    Google Scholar 

  42. Morris J D, Leemann W P, Tera F. The subducted component in island arc lavas: constraints from Be isotopes and B-Be systematic. Nature, 1990, 344: 31–36

    Article  PubMed  CAS  Google Scholar 

  43. Sigmarsson O, Condomines M, Morris J D, et al. Uranium and 10Be enrichments by fluids in the Andean arc magmas. Nature, 1990, 346:163–165

    Article  CAS  Google Scholar 

  44. Plank T, Langmuir C H. Tracing trace elements from sediment input to volcanic output at subduction zones. Nature, 1993, 362: 739–743

    Article  CAS  Google Scholar 

  45. Gill J. Orogenic Andesites and Plate Tectonics. New York: Springer, 1980. 390

    Google Scholar 

  46. Tatsumi Y. Formation of the volcanic front in subduction zones. Geophys Res Lett, 1986, 17: 717–720

    Article  Google Scholar 

  47. Mottana A, Carswell D A, Chopin C, et al. Eclogite facies mineral parageneses. In: Carswell D A, eds. Eclogite Facies Rocks. New York: Blackie and Son Ltd, 1990. 14–52

    Google Scholar 

  48. Wei C J, Powell R. Calculated phase relations in high-pressure metapelites in the system NKFMASH (Na2O-K2O-FeO-MgO-Al2O3-SiO2-H2O) with application to natural rocks. J Petrol, 2004, 44: 183–202

    Article  Google Scholar 

  49. Yang J J, Powell R. Calculated phase relations in the system Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O with applications to UHP eclogites and whiteschists. J Petrol, 2006, 47: 2047–2071

    Article  CAS  Google Scholar 

  50. Wei C J, Yang Y, Su X L, et al. Metamorphic evolution of low-T eclogite from the north Qilian orogen, NW China: Evidence from petrography and calculated phase equilibria in system NCKFMASHO. J Meta Geol, Submitted.

  51. Okamoto K, Maruyama S. The high-pressure synthesis of lawsonite in the MORB-H2O system. Am Mineral, 1999, 84: 362–373

    CAS  Google Scholar 

  52. Perfit M R, Gust D A, Bence A E, et al. Chemical characteristics of island-arc basalts: implications for mantle sources. Chem Geol, 1980, 30: 227–256

    Article  CAS  Google Scholar 

  53. Kay R W. Volcanic arc magmas: implications of a melting-mixing model for element recycling in the crust-upper mantle system. J Geol, 1980, 88: 497–522

    Article  CAS  Google Scholar 

  54. McCulloch M T, Gamble J A. Geochemical and geodynamical constraints on subduction zone magmatism. Earth Planet Sci Lett, 1991, 102: 358–374

    Article  CAS  Google Scholar 

  55. Johnson M C, Plank T. Dehydration and melting experiments constrain the fate of subducted sediments. Geochem Geophys Geosyst, 1 Electron J, 1999, 1, paper no. 1999GC000014

  56. Ryan J G, Morris J, Tera F, et al. Cross-arc geochemical variations in the Kurile arc as a function of depth. Science, 1995, 270: 625–627

    Article  Google Scholar 

  57. Martin H. Adakitic magmas: modern analogues of Archean granitoids. Lithos, 1999, 46: 411–429

    Article  CAS  Google Scholar 

  58. Foley S. Petrological characterization of the source components of potassic magmas: Geochemical and experimental constraints. Lithos, 1992, 28: 187–204

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChunJing Wei.

Additional information

Supported by National Natural Science Foundation of China (Grant No. 40525006)

About this article

Cite this article

Wei, C., Zhang, Y. Phase transition in the subducted oceanic lithosphere and generation of the subduction zone magma. Chin. Sci. Bull. 53, 3603–3614 (2008). https://doi.org/10.1007/s11434-008-0405-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-008-0405-3

Keywords

Navigation