Skip to main content
Log in

Effects of a phase transition on two-pion interferometry in heavy ion collisions at \(\sqrt {{s_{{\rm{NN}}}}} = 2.4 - 7.7\,\,{\rm{GeV}}\)

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Hanbury-Brown-Twiss (HBT) correlations for charged pions in central Au+Au collisions at \(\sqrt {{s_{{\rm{NN}}}}} = 2.4 - 7.7\) GeV (corresponding to beam kinetic energies in the fixed target frame from Elab = 1.23 to 30 GeV/nucleon) are calculated using the ultra-relativistic quantum molecular dynamics model with different equations of state (EoSs). The effects of a phase transition at high baryon densities are clearly observed in the explored HBT parameters. The results show that the available data on the HBT radii, RO/RS and R 2O R 2S , in the investigated energy region favor a relatively stiff EoS at low beam energies, which then turns into a soft EoS at high collision energies consistent with astrophysical constraints on the high-density EoS of quantum chromodynamics (QCD). The specific effects of two different phase transition scenarios on RO/RS and R 2O R 2S are investigated. A phase transition with a significant softening of the EoS below four times the nuclear saturation density can be excluded using HBT data. Our results highlight that the pion’s RO/RS and R 2O R 2S are sensitive to the stiffness of the EoS and can be used to constrain and understand the QCD EoS in a high baryon density region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Pandav, D. Mallick, and B. Mohanty, Prog. Part. Nucl. Phys. 125, 103960 (2022), arXiv: 2203.07817.

    Article  Google Scholar 

  2. Y. Aoki, G. Endrodi, Z. Fodor, S. D. Katz, and K. K. Szabó, Nature 443, 675 (2006), arXiv: hep-lat/0611014.

    Article  ADS  Google Scholar 

  3. A. Bazavov, et al. (HotQCD Collaboration), Phys. Rev. D 85, 054503 (2012), arXiv: 1111.1710.

    Article  ADS  Google Scholar 

  4. P. Braun-Munzinger, V. Koch, T. Schäfer, and J. Stachel, Phys. Rep. 621, 76 (2016), arXiv: 1510.00442.

    Article  ADS  MathSciNet  Google Scholar 

  5. A. Bzdak, S. I. Esumi, V. Koch, J. Liao, M. Stephanov, and N. Xu, Phys. Rep. 853, 1 (2020).

    Article  ADS  Google Scholar 

  6. P. J. Gunkel, and C. S. Fischer, Phys. Rev. D 104, 054022 (2021), arXiv: 2106.08356.

    Article  ADS  Google Scholar 

  7. L. M. Lu, H. Yi, Z. G. Xiao, M. Shao, S. Zhang, G. Q. Xiao, and N. Xu, Sci. China-Phys. Mech. Astron. 60, 012021 (2017).

    Article  ADS  Google Scholar 

  8. The STAR Collaboration, SN0598: Studying the phase diagram of QCD matter at RHIC (STAR Notes, 2014).

  9. K. H. Ackermann, Nucl. Instrum. Methods Phys. Res. Sect. A 499, 624 (2003).

    Article  ADS  Google Scholar 

  10. E. L. Bratkovskaya, M. Bleicher, M. Reiter, S. Soff, H. Stöcker, M. van Leeuwen, S. A. Bass, and W. Cassing, Phys. Rev. C 69, 054907 (2004), arXiv: nucl-th/0402026.

    Article  ADS  Google Scholar 

  11. E. L. Bratkovskaya, J. Aichelin, M. Thomere, S. Vogel, and M. Bleicher, Phys. Rev. C 87, 064907 (2013), arXiv: 1301.0786.

    Article  ADS  Google Scholar 

  12. T. Reichert, A. Elz, T. Song, G. Coci, M. Winn, E. Bratkovskaya, J. Aichelin, J. Steinheimer, and M. Bleicher, J. Phys. G-Nucl. Part. Phys. 49, 055108 (2022), arXiv: 2111.07652.

    Article  ADS  Google Scholar 

  13. M. Bleicher, and E. Bratkovskaya, Prog. Part. Nucl. Phys. 122, 103920 (2022).

    Article  Google Scholar 

  14. H. Wolter, et al. (TMEP Collaboration), Prog. Part. Nucl. Phys. 125, 103962 (2022), arXiv: 2202.06672.

    Article  Google Scholar 

  15. S. A. Bass, A. Dumitru, M. Bleicher, L. Bravina, E. Zabrodin, H. Stöcker, and W. Greiner, Phys. Rev. C 60, 021902 (1999), arXiv: nucl-th/9902062.

    Article  ADS  Google Scholar 

  16. A. Dumitru, S. A. Bass, M. Bleicher, H. Stöcker, and W. Greiner, Phys. Lett. B 460, 411 (1999).

    Article  ADS  Google Scholar 

  17. J. Steinheimer, M. Bleicher, H. Petersen, S. Schramm, H. Stöcker, and D. Zschiesche, Phys. Rev. C 77, 034901 (2008), arXiv: 0710.0332.

    Article  ADS  Google Scholar 

  18. H. Petersen, J. Steinheimer, G. Burau, M. Bleicher, and H. Stöcker, Phys. Rev. C 78, 044901 (2008), arXiv: 0806.1695.

    Article  ADS  Google Scholar 

  19. J. Steinheimer, S. Schramm, and H. Stöcker, Phys. Rev. C 84, 045208 (2011), arXiv: 1108.2596.

    Article  ADS  Google Scholar 

  20. S. W. Lan, and S. S. Shi, Nucl. Sci. Tech. 33, 21 (2022).

    Article  Google Scholar 

  21. C. Shen, and L. Yan, Nucl. Sci. Tech. 31, 122 (2020).

    Article  Google Scholar 

  22. J. Adam, et al. (STAR Collaboration), Phys. Rev. Lett. 126, 092301 (2021), arXiv: 2001.02852.

    Article  ADS  Google Scholar 

  23. M. S. Abdallah, et al. (STAR Collaboration), Phys. Rev. Lett. 128, 202303 (2022), arXiv: 2112.00240.

    Article  ADS  Google Scholar 

  24. X. H. Jin, J. H. Chen, Z. W. Lin, G. L. Ma, Y. G. Ma, and S. Zhang, Sci. China-Phys. Mech. Astron. 62, 011012 (2019).

    Article  Google Scholar 

  25. T. Anticic, et al. (NA49 Collaboration), Eur. Phys. J. C 75, 587 (2015).

    Article  ADS  Google Scholar 

  26. K. J. Sun, L. W. Chen, C. M. Ko, J. Pu, and Z. Xu, Phys. Lett. B 781, 499 (2018), arXiv: 1801.09382.

    Article  ADS  Google Scholar 

  27. R. A. Lacey, Phys. Rev. Lett. 114, 142301 (2015), arXiv: 1411.7931.

    Article  ADS  Google Scholar 

  28. M. Bluhm, A. Kalweit, M. Nahrgang, M. Arslandok, P. Braun-Munzinger, S. Floerchinger, E. S. Fraga, M. Gazdzicki, C. Hartnack, C. Herold, R. Holzmann, I. Karpenko, M. Kitazawa, V. Koch, S. Leupold, A. Mazeliauskas, B. Mohanty, A. Ohlson, D. Oliinychenko, J. M. Pawlowski, C. Plumberg, G. W. Ridgway, T. Schäfer, I. Selyuzhenkov, J. Stachel, M. Stephanov, D. Teaney, N. Touroux, V. Vovchenko, and N. Wink, Nucl. Phys. A 1003, 122016 (2020), arXiv: 2001.08831.

    Article  Google Scholar 

  29. R. H. Brown, and R. G. Twiss, London Edinburgh Dublin Philos. Mag. J. Sci. 45, 663 (1954).

    Article  Google Scholar 

  30. R. Hanbury Brown, and R. Q. Twiss, Nature 178, 1046 (1956).

    Article  ADS  Google Scholar 

  31. G. Goldhaber, S. Goldhaber, W. Lee, and A. Pais, Phys. Rev. 120, 300 (1960).

    Article  ADS  MathSciNet  Google Scholar 

  32. W. A. Zajc, J. A. Bistirlich, R. R. Bossingham, H. R. Bowman, C. W. Clawson, K. M. Crowe, K. A. Frankel, J. G. Ingersoll, J. M. Kurck, C. J. Martoff, D. L. Murphy, J. O. Rasmussen, J. P. Sullivan, E. Yoo, O. Hashimoto, M. Koike, W. J. McDonald, J. P. Miller, and P. Truöl, Phys. Rev. C 29, 2173 (1984).

    Article  ADS  Google Scholar 

  33. S. Pratt, Phys. Rev. Lett. 53, 1219 (1984).

    Article  ADS  Google Scholar 

  34. M. A. Lisa, et al. (E895 Collaboration), Phys. Rev. Lett. 84, 2798 (2000).

    Article  ADS  Google Scholar 

  35. M. Annan Lisa, S. Pratt, R. Soltz, and U. Wiedemann, Annu. Rev. Nucl. Part. Sci. 55, 357 (2005), arXiv: nucl-ex/0505014.

    Article  ADS  Google Scholar 

  36. L. Adamczyk, et al. (STAR Collaboration), Phys. Rev. C 92, 014904 (2015).

    Article  ADS  Google Scholar 

  37. Y. J. Wang, F. H. Guan, X. Y. Diao, Q. H. Wu, X. L. Wei, H. R. Yang, P. Ma, Z. Qin, Y. H. Qin, D. Guo, R. J. Hu, L. M. Duan, and Z. G. Xiao, Nucl. Sci. Tech. 32, 4 (2021).

    Article  Google Scholar 

  38. L. Y. Li, P. Ru, and Y. Hu, Nucl. Sci. Tech. 32, 19 (2021).

    Article  Google Scholar 

  39. S. Pratt, Phys. Rev. D 33, 1314 (1986).

    Article  ADS  Google Scholar 

  40. Q. Li, C. Shen, and M. Bleicher, Open Phys. 10, 1131 (2012), arXiv: 1009.3334.

    Article  ADS  Google Scholar 

  41. Y. G. Ma, Y. B. Wei, W. Q. Shen, X. Z. Cai, J. G. Chen, J. H. Chen, D. Q. Fang, W. Guo, C. W. Ma, G. L. Ma, Q. M. Su, W. D. Tian, K. Wang, T. Z. Yan, C. Zhong, and J. X. Zuo, Phys. Rev. C 73, 014604 (2006), arXiv: nucl-th/0601078.

    Article  ADS  Google Scholar 

  42. G. Bertsch, M. Gong, and M. Tohyama, Phys. Rev. C 37, 1896 (1988).

    Article  ADS  Google Scholar 

  43. D. H. Rischke, and M. Gyulassy, Nucl. Phys. A 608, 479 (1996).

    Article  ADS  Google Scholar 

  44. Q. Li, J. Steinheimer, H. Petersen, M. Bleicher, and H. Stöcker, Phys. Lett. B 674, 111 (2009), arXiv: 0812.0375.

    Article  ADS  Google Scholar 

  45. C. J. Zhang, and J. Xu, Phys. Rev. C 96, 044907 (2017), arXiv: 1707.07272.

    Article  ADS  Google Scholar 

  46. P. Batyuk, I. Karpenko, R. Lednicky, L. Malinina, K. Mikhaylov, O. Rogachevsky, and D. Wielanek, Phys. Rev. C 96, 024911 (2017).

    Article  ADS  Google Scholar 

  47. M. Alqahtani, and M. Strickland, Phys. Rev. C 102, 064902 (2020), arXiv: 2007.04209.

    Article  ADS  Google Scholar 

  48. M. Omana Kuttan, A. Motornenko, J. Steinheimer, H. Stoecker, Y. Nara, and M. Bleicher, Eur. Phys. J. C 82, 427 (2022), arXiv: 2201.01622.

    Article  ADS  Google Scholar 

  49. J. Steinheimer, A. Motornenko, A. Sorensen, Y. Nara, V. Koch, and M. Bleicher, Eur. Phys. J. C 82, 911 (2022), arXiv: 2208.12091.

    Article  ADS  Google Scholar 

  50. J. Steinheimer, Y. Wang, A. Mukherjee, Y. Ye, C. Guo, Q. Li, and H. Stoecker, Phys. Lett. B 785, 40 (2018), arXiv: 1804.08936.

    Article  ADS  Google Scholar 

  51. Y. Ye, Y. Wang, Q. Li, D. Lu, and F. Wang, Phys. Rev. C 101, 034915 (2020), arXiv: 2004.11745.

    Article  ADS  Google Scholar 

  52. S. Bass, Prog. Part. Nucl. Phys. 41, 255 (1998).

    Article  ADS  Google Scholar 

  53. M. Bleicher, E. Zabrodin, C. Spieles, S. A. Bass, C. Ernst, S. Soff, L. Bravina, M. Belkacem, H. Weber, H. Stöcker, and W. Greiner, J. Phys. G-Nucl. Part. Phys. 25, 1859 (1999), arXiv: hep-ph/9909407.

    Article  ADS  Google Scholar 

  54. Q. Li, and Z. Li, Mod. Phys. Lett. A 27, 1250004 (2012), arXiv: 1010.2570.

    Article  ADS  Google Scholar 

  55. P. Hillmann, J. Steinheimer, and M. Bleicher, J. Phys. G-Nucl. Part. Phys. 45, 085101 (2018), arXiv: 1802.01951.

    Article  ADS  Google Scholar 

  56. P. Hillmann, J. Steinheimer, T. Reichert, V. Gaebel, M. Bleicher, S. Sombun, C. Herold, and A. Limphirat, J. Phys. G-Nucl. Part. Phys. 47, 055101 (2020), arXiv: 1907.04571.

    Article  ADS  Google Scholar 

  57. Q. Li, Z. Li, S. Soff, M. Bleicher, and H. Stöcker, J. Phys. G-Nucl. Part. Phys. 32, 151 (2006), arXiv: nucl-th/0509070.

    Article  ADS  Google Scholar 

  58. Q. F. Li, Y. J. Wang, X. B. Wang, and C. W. Shen, Sci. China-Phys. Mech. Astron. 59, 632001 (2016), arXiv: 1603.09087.

    Article  Google Scholar 

  59. M. S. Abdallah, Phys. Lett. B 827, 137003 (2022).

    Article  Google Scholar 

  60. C. Sturm, et al. (KaoS Collaboration), Phys. Rev. Lett. 86, 39 (2001), arXiv: nucl-ex/0011001.

    Article  ADS  Google Scholar 

  61. G. Raaijmakers, S. K. Greif, T. E. Riley, T. Hinderer, K. Hebeler, A. Schwenk, A. L. Watts, S. Nissanke, S. Guillot, J. M. Lattimer, and R. M. Ludlam, Astrophys. J. 893, L21 (2020), arXiv: 1912.11031.

    Article  ADS  Google Scholar 

  62. Y. L. Ma, H. K. Lee, W. G. Paeng, and M. Rho, Sci. China-Phys. Mech. Astron. 62, 112011 (2019), arXiv: 1804.00305.

    Article  ADS  Google Scholar 

  63. W. C. Yang, Y. L. Ma, and Y. L. Wu, Sci. China-Phys. Mech. Astron. 64, 252011 (2021), arXiv: 2011.03665.

    Article  ADS  Google Scholar 

  64. J. Liu, C. Gao, N. Wan, and C. Xu, Nucl. Sci. Tech. 32, 117 (2021).

    Article  Google Scholar 

  65. F. Zhang, and J. Su, Nucl. Sci. Tech. 31, 77 (2020).

    Article  Google Scholar 

  66. G. F. Wei, Q. J. Zhi, X. W. Cao, and Z. W. Long, Nucl. Sci. Tech. 31, 71 (2020).

    Article  Google Scholar 

  67. J. Hong, and P. Danielewicz, Phys. Rev. C 90, 024605 (2014), arXiv: 1307.7654.

    Article  ADS  Google Scholar 

  68. Z. Q. Feng, Phys. Rev. C 94, 054617 (2016), arXiv: 1611.08495.

    Article  ADS  Google Scholar 

  69. J. Xu, L. W. Chen, C. M. Ko, B. A. Li, and Y. G. Ma, Phys. Rev. C 87, 067601 (2013), arXiv: 1305.0091.

    Article  ADS  Google Scholar 

  70. Z. Zhang, and C. M. Ko, Phys. Rev. C 95, 064604 (2017), arXiv: 1701.06682.

    Article  ADS  Google Scholar 

  71. C. Fuchs, L. Sehn, E. Lehmann, J. Zipprich, and A. Faessler, Phys. Rev. C 55, 411 (1997), arXiv: nucl-th/9610027.

    Article  ADS  Google Scholar 

  72. W. J. Xie, J. Su, L. Zhu, and F. S. Zhang, Phys. Rev. C 97, 064608 (2018).

    Article  ADS  Google Scholar 

  73. Y. Liu, Y. Wang, Q. Li, and L. Liu, Phys. Rev. C 97, 034602 (2018), arXiv: 1804.04295.

    Article  ADS  Google Scholar 

  74. A. Motornenko, J. Steinheimer, V. Vovchenko, S. Schramm, and H. Stoecker, Phys. Rev. C 101, 034904 (2020), arXiv: 1905.00866.

    Article  ADS  Google Scholar 

  75. J. Steinheimer, S. Schramm, and H. Stöcker, J. Phys. G-Nucl. Part. Phys. 38, 035001 (2011), arXiv: 1009.5239.

    Article  ADS  Google Scholar 

  76. A. Mukherjee, J. Steinheimer, and S. Schramm, Phys. Rev. C 96, 025205 (2017), arXiv: 1611.10144.

    Article  ADS  Google Scholar 

  77. A. Motornenko, S. Pal, A. Bhattacharyya, J. Steinheimer, and H. Stoecker, Phys. Rev. C 103, 054908 (2021), arXiv: 2009.10848.

    Article  ADS  Google Scholar 

  78. P. Jakobus, B. Müller, A. Heger, A. Motornenko, J. Steinheimer, and H. Stoecker, Mon. Not. R. Astron. Soc. 516, 2554 (2022), arXiv: 2204.10397.

    Article  ADS  Google Scholar 

  79. E. R. Most, A. Motornenko, J. Steinheimer, V. Dexheimer, M. Hanauske, L. Rezzolla, and H. Stoecker, arXiv: 2201.13150.

  80. F. Seck, T. Galatyuk, A. Mukherjee, R. Rapp, J. Steinheimer, J. Stroth, and M. Wiest, Phys. Rev. C 106, 014904 (2022), arXiv: 2010.04614.

    Article  ADS  Google Scholar 

  81. C. Y. Wong, and W. N. Zhang, Phys. Rev. C 76, 034905 (2007), arXiv: 0708.1948.

    Article  ADS  Google Scholar 

  82. Y. M. Sinyukov, R. Lednicky, S. V. Akkelin, J. Pluta, and B. Erazmus, Phys. Lett. B 432, 248 (1998).

    Article  ADS  Google Scholar 

  83. J. Adamczewski-Musch, et al. (HADES Collaboration), Phys. Lett. B 795, 446 (2019), arXiv: 1811.06213.

    Article  ADS  Google Scholar 

  84. J. Adamczewski-Musch, et al. (HADES Collaboration), Eur. Phys. J. A 56, 140 (2020), arXiv: 1910.07885.

    Article  ADS  Google Scholar 

  85. Q. Li, and M. Bleicher, J. Phys. G-Nucl. Part. Phys. 36, 015111 (2009), arXiv: 0808.3457.

    Article  ADS  Google Scholar 

  86. Q. Li, G. Gräf, and M. Bleicher, Phys. Rev. C 85, 034908 (2012), arXiv: 1203.4104.

    Article  ADS  Google Scholar 

  87. M. S. Abdallah, et al. (STAR Collaboration), Phys. Rev. C 103, 034908 (2021), arXiv: 2007.14005.

    Article  ADS  Google Scholar 

  88. Q. Li, M. Bleicher, and H. Stöcker, J. Phys. G-Nucl. Part. Phys. 34, 2037 (2007), arXiv: 0706.2091.

    Article  ADS  Google Scholar 

  89. J. Adams, et al. (STAR Collaboration), Phys. Rev. C 71, 044906 (2005), arXiv: nucl-ex/0411036.

    Article  ADS  Google Scholar 

  90. Q. Li, M. Bleicher, X. Zhu, and H. Stöcker, J. Phys. G-Nucl. Part. Phys. 34, 537 (2007).

    Article  Google Scholar 

  91. Q. Li, M. Bleicher, and H. Stöcker, Phys. Rev. C 73, 064908 (2006), arXiv: nucl-th/0602032.

    Article  ADS  Google Scholar 

  92. L. M. Fang, Y. G. Ma, and S. Zhang, Eur. Phys. J. A 58, 81 (2022), arXiv: 2205.03988.

    Article  ADS  Google Scholar 

  93. S. Pratt, Phys. Rev. Lett. 102, 232301 (2009), arXiv: 0811.3363.

    Article  ADS  Google Scholar 

  94. U. Heinz, B. Tomášik, U. A. Wiedemann, and Y. F. Wu, Phys. Lett. B 382, 181 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingfeng Li.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11875125, and 12075085). P. Li gratefully acknowledges the financial support from China Scholarship Council (Grant No. 202106180053). J. Steinheimer thanks the Samson AG for funding. The authors are grateful to the C3S2 computing center in Huzhou University for calculation support.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Steinheimer, J., Reichert, T. et al. Effects of a phase transition on two-pion interferometry in heavy ion collisions at \(\sqrt {{s_{{\rm{NN}}}}} = 2.4 - 7.7\,\,{\rm{GeV}}\). Sci. China Phys. Mech. Astron. 66, 232011 (2023). https://doi.org/10.1007/s11433-022-2041-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-022-2041-8

Navigation