Skip to main content

Advertisement

Log in

Basic quantities of the equation of state in isospin asymmetric nuclear matter

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Based on the Hugenholtz–Van Hove theorem, six basic quantities of the EoS in isospin asymmetric nuclear matter are expressed in terms of the nucleon kinetic energy t(k), the isospin symmetric and asymmetric parts of the single-nucleon potentials \(U_0(\rho ,k)\) and \(U_{\text {sym},i}(\rho ,k)\). The six basic quantities include the quadratic symmetry energy \(E_{\text {sym,2}}(\rho )\), the quartic symmetry energy \(E_{\text {sym,4}}(\rho )\), their corresponding density slopes \(L_2(\rho )\) and \(L_4(\rho )\), and the incompressibility coefficients \(K_2(\rho )\) and \(K_4(\rho )\). By using four types of well-known effective nucleon–nucleon interaction models, namely the BGBD, MDI, Skyrme, and Gogny forces, the density- and isospin-dependent properties of these basic quantities are systematically calculated and their values at the saturation density \(\rho _0\) are explicitly given. The contributions to these quantities from t(k), \(U_0(\rho ,k)\), and \(U_{\text {sym},i}(\rho ,k)\) are also analyzed at the normal nuclear density \(\rho _0\). It is clearly shown that the first-order asymmetric term \(U_{\text {sym,1}}(\rho ,k)\) (also known as the symmetry potential in the Lane potential) plays a vital role in determining the density dependence of the quadratic symmetry energy \(E_{\text {sym,2}}(\rho )\). It is also shown that the contributions from the high-order asymmetric parts of the single-nucleon potentials (\(U_{\text {sym},i}(\rho ,k)\) with \(i>1\)) cannot be neglected in the calculations of the other five basic quantities. Moreover, by analyzing the properties of asymmetric nuclear matter at the exact saturation density \(\rho _{\text {sat}}(\delta )\), the corresponding quadratic incompressibility coefficient is found to have a simple empirical relation \(K_{\text {sat,2}}=K_{2}(\rho _0)-4.14 L_2(\rho _0)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. Danielewicz, R. Lacey, W.G. Lynch, Determination of the equation of state of dense matter. Science 298, 1592 (2002). https://doi.org/10.1126/science.1078070

    Article  ADS  Google Scholar 

  2. J.M. Lattimer, M. Prakash, The physics of neutron stars. Science 304, 536 (2004). https://doi.org/10.1126/science.1090720

    Article  ADS  Google Scholar 

  3. M. Baldo, G.F. Burgio, The nuclear symmetry energy. Prog. Part. Nucl. Phys. 91, 203 (2016). https://doi.org/10.1016/j.ppnp.2016.06.006

    Article  ADS  Google Scholar 

  4. C.J. Jiang, Y. Qiang, D.W. Guan et al., From finite nuclei to neutron stars: the essential role of high-order density dependence in effective forces. Chin. Phys. Lett. 38, 052101 (2021). https://doi.org/10.1088/0256-307X/38/5/052101

    Article  ADS  Google Scholar 

  5. X.L. Ren, C.X. Chen, K.W. Li et al., Relativistic chiral description of the \(^1 S_0\) nucleon-nucleon scattering. Chin. Phys. Lett. 38, 062101 (2021). https://doi.org/10.1088/0256-307X/38/6/062101

    Article  ADS  Google Scholar 

  6. M. Bender, P.H. Heenen, P.G. Reinhard, Self-consistent mean-field models for nuclear structure. Rev. Mod. Phys. 75, 121 (2003). https://doi.org/10.1103/RevModPhys.75.121

    Article  ADS  Google Scholar 

  7. J. Xu, Constraining isovector nuclear interactions with giant dipole resonance and neutron skin in \(^{208}\)Pb from a Bayesian approach. Chin. Phys. Lett. 38, 042101 (2021). https://doi.org/10.1088/0256-307X/38/4/042101

    Article  ADS  Google Scholar 

  8. H. Yu, D.Q. Fang, Y.G. Ma, Investigation of the symmetry energy of nuclear matter using isospin-dependent quantum molecular dynamics. Nucl. Sci. Tech. 31, 61 (2020). https://doi.org/10.1007/s41365-020-00766-x

    Article  Google Scholar 

  9. J.M. Dong, W. Zuo, J.Z. Gu, Origin of symmetry energy in finite nuclei and density dependence of nuclear matter symmetry energy from measured \(\alpha \)-decay energies. Phys. Rev. C 87, 014303 (2013). https://doi.org/10.1103/PhysRevC.87.014303

    Article  ADS  Google Scholar 

  10. L.W. Chen, C.M. Ko, B.A. Li et al., Probing isospin- and momentum-dependent nuclear effective interactions in neutron-rich matter. Eur. Phys. J. A 50, 29 (2014). https://doi.org/10.1140/epja/i2014-14029-6

    Article  ADS  Google Scholar 

  11. O. Li, Z.X. Li, X.Z. Wu et al., Disentangling the effects of thickness of the neutron skin and symmetry potential in nucleon induced reactions on Sn isotopes. Chin. Phys. Lett. 26, 052501 (2009). https://doi.org/10.1088/0256-307X/26/5/052501

    Article  ADS  Google Scholar 

  12. G.F. Wei, Q.J. Zhi, X.W. Cao et al., Examination of an isospin-dependent single-nucleon momentum distribution for isospin-asymmetric nuclear matter in heavy-ion collisions. Nucl. Sci. Tech. 31, 71 (2020). https://doi.org/10.1007/s41365-020-00779-6

    Article  Google Scholar 

  13. G. Coló, U. Garg, H. Sagawa, Symmetry energy from the nuclear collective motion: constraints from dipole, quadrupole, monopole and spin-dipole resonances. Eur. Phys. J. A 50, 26 (2014). https://doi.org/10.1140/epja/i2014-14026-9

    Article  ADS  Google Scholar 

  14. J. Xu, L.W. Chen, B.A. Li et al., Locating the inner edge of the neutron star crust using terrestrial nuclear laboratory data. Phys. Rev. C 79, 035802 (2009). https://doi.org/10.1103/PhysRevC.79.035802

    Article  ADS  Google Scholar 

  15. B.A. Li, P.G. Krastev, D.H. Wen et al., Towards understanding astrophysical effects of nuclear symmetry energy. Eur. Phys. J. A 55, 23 (2019). https://doi.org/10.1140/epja/i2019-12780-8

    Article  Google Scholar 

  16. Y. Xu, Q.J. Zhi, Y.B. Wang et al., Nucleonic \(^1 S_0\) superfluidity induced by a soft pion in neutron star matter with antikaon condensations. Chin. Phys. Lett. 36, 061301 (2019). https://doi.org/10.1088/0256-307X/36/6/061301

    Article  ADS  Google Scholar 

  17. B.A. Li, N.B. Zhang, Astrophysical constraints on a parametric equation of state for neutron-rich nucleonic matter. Nucl. Sci. Tech. 29, 178 (2018). https://doi.org/10.1007/s41365-018-0515-9

    Article  Google Scholar 

  18. B.A. Li, L.W. Chen, C.M. Ko, Recent progress and new challenges in isospin physics with heavy-ion reactions. Phys. Rep. 464, 113 (2008). https://doi.org/10.1016/j.physrep.2008.04.005

    Article  ADS  Google Scholar 

  19. J.P. Blaizot, Nuclear compressibilities. Phys. Rep. 64, 171 (1980). https://doi.org/10.1016/0370-1573(80)90001-0

    Article  ADS  MathSciNet  Google Scholar 

  20. D.H. Youngblood, H.L. Clark, Y.W. Lui, Incompressibility of nuclear matter from the giant monopole resonance. Phys. Rev. Lett. 82, 691 (1999). https://doi.org/10.1103/PhysRevLett.82.691

    Article  ADS  Google Scholar 

  21. S. Shlomo, V.M. Kolomietz, G. Colò, Deducing the nuclear-matter incompressibility coefficient from data on isoscalar compression modes. Eur. Phys. J. A 30, 23 (2006). https://doi.org/10.1140/epja/i2006-10100-3

    Article  ADS  Google Scholar 

  22. N.B. Zhang, B.A. Li, J. Xu, Combined constraints on the equation of state of dense neutron-rich matter from terrestrial nuclear experiments and observations of neutron stars. Astrophys. J. 859, 90 (2018). https://doi.org/10.3847/1538-4357/aac027

    Article  ADS  Google Scholar 

  23. W.J. Xie, B.A. Li, Bayesian inference of high-density nuclear symmetry energy from radii of canonical neutron stars. Astrophys. J. 883, 174 (2019). https://doi.org/10.3847/1538-4357/ab3f37

    Article  ADS  Google Scholar 

  24. B.J. Cai, L.W. Chen, Constraints on the skewness coefficient of symmetric nuclear matter within the nonlinear relativistic mean field model. Nucl. Sci. Tech. 28, 185 (2017). https://doi.org/10.1007/s41365-017-0329-1

    Article  Google Scholar 

  25. B.A. Li, H. Xiao, Constraining the neutron-proton effective mass splitting using empirical constraints on the density dependence of nuclear symmetry energy around normal density. Phys. Lett. B 727, 276 (2013). https://doi.org/10.1016/j.physletb.2013.10.006

    Article  ADS  Google Scholar 

  26. M. Oertel, M. Hempel, T. Klähn et al., Equations of state for supernovae and compact stars. Rev. Mod. Phys. 89, 015007 (2017). https://doi.org/10.1103/RevModPhys.89.015007

    Article  ADS  Google Scholar 

  27. U. Garg, T. Li, S. Okumura et al., The giant monopole resonance in the Sn isotopes: why is Tin so fluffy? Nucl. Phys. A 788, 36–43 (2007). https://doi.org/10.1016/j.nuclphysa.2007.01.046

    Article  ADS  Google Scholar 

  28. T. Li, U. Garg, Y. Liu et al., Isotopic dependence of the giant monopole resonance in the even-A \(^{112-124}Sn \) isotopes and the asymmetry term in nuclear incompressibility. Phys. Rev. Lett. 99, 162503 (2007). https://doi.org/10.1103/PhysRevLett.99.162503

    Article  ADS  Google Scholar 

  29. M. Lopez-Quelle, S. Marcos, R. Niembro et al., Asymmetric nuclear matter in the relativistic approach. Nucl. Phys. A 483, 479 (1988). https://doi.org/10.1016/0375-9474(88)90080-2

    Article  ADS  Google Scholar 

  30. Z.G. Xiao, B.A. Li, L.W. Chen et al., Circumstantial evidence for a soft nuclear symmetry energy at suprasaturation densities. Phys. Rev. Lett. 102, 062502 (2009). https://doi.org/10.1103/PhysRevLett.102.062502

    Article  ADS  Google Scholar 

  31. L.W. Chen, C.M. Ko, B.A. Li, Isospin-dependent properties of asymmetric nuclear matter in relativistic mean field models. Phys. Rev. C 76, 054316 (2007). https://doi.org/10.1103/PhysRevC.76.054316

    Article  ADS  Google Scholar 

  32. C. Xu, Z.Z. Ren, Effect of short-range and tensor force correlations on high-density behavior of symmetry energy. Chin. Phys. Lett. 29, 122102 (2012). https://doi.org/10.1088/0256-307X/29/12/122102

    Article  ADS  Google Scholar 

  33. N.B. Zhang, B.J. Cai, B.A. Li et al., How tightly is the nuclear symmetry energy constrained by a unitary Fermi gas? Nucl. Sci. Tech. 28, 181 (2017). https://doi.org/10.1007/s41365-017-0336-2

    Article  Google Scholar 

  34. J. Pu, Z. Zhang, L.W. Chen, Nuclear matter fourth-order symmetry energy in nonrelativistic mean-field models. Phys. Rev. C 96, 054311 (2017). https://doi.org/10.1103/PhysRevC.96.054311

    Article  Google Scholar 

  35. Z.W. Liu, Z. Qian, R.Y. Xing et al., Nuclear fourth-order symmetry energy and its effects on neutron star properties in the relativistic Hartree–Fock theory. Phys. Rev. C 97, 025801 (2018). https://doi.org/10.1103/PhysRevC.97.025801

    Article  ADS  Google Scholar 

  36. J.M. Dong, W. Zuo, J.Z. Gu, The fourth-order symmetry energy of finite nuclei. Phys. Atom. Nucl. 81, 283 (2018). https://doi.org/10.1134/S1063778818030109

    Article  ADS  Google Scholar 

  37. C.G. Boquera, M. Centelles, X. Viñas et al., Higher-order symmetry energy and neutron star core-crust transition with Gogny forces. Phys. Rev. C 96, 065806 (2017). https://doi.org/10.1103/PhysRevC.96.065806

    Article  ADS  Google Scholar 

  38. N.M. Hugenholtz, L. Van Hove, A theorem on the single particle energy in a Fermi gas with interaction. Physica 24, 363 (1958). https://doi.org/10.1016/S0031-8914(58)95281-9

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. N. Wan, C. Xu, Z.Z. Ren, \(\alpha \)-Decay half-life screened by electrons. Nucl. Sci. Tech. 27, 149 (2016). https://doi.org/10.1007/s41365-016-0150-2

    Article  Google Scholar 

  40. N. Wan, C. Xu, Z.Z. Ren et al., Constraints on both the symmetry energy \(E_2({\rho _0})\) and its density slope \(L_2(\rho _0)\) by cluster radioactivity. Phys. Rev. C 96, 044331 (2017). https://doi.org/10.1103/PhysRevC.96.044331

    Article  ADS  Google Scholar 

  41. C. Xu, B.A. Li, L.W. Chen et al., Analytical relations between nuclear symmetry energy and single-nucleon potentials in isospin asymmetric nuclear matter. Nucl. Phys. A 865, 1 (2011). https://doi.org/10.1016/j.nuclphysa.2011.06.027

    Article  ADS  Google Scholar 

  42. C. Xu, B.A. Li, L.W. Chen, Attempt to link the neutron skin thickness of \(^{ 208}Pb\) with the symmetry energy through cluster radioactivity. Phys. Rev. C 90, 064310 (2014). https://doi.org/10.1103/PhysRevC.90.064310

    Article  ADS  Google Scholar 

  43. M. Ji, C. Xu, Quantum anti-Zeno effect in nuclear \(\beta \) decay. Chin. Phys. Lett. 38, 032301 (2021). https://doi.org/10.1088/0256-307X/38/3/032301

    Article  ADS  Google Scholar 

  44. C. Gale, G. Bertsch, S. Das Gupta, Heavy-ion collision theory with momentum-dependent interactions. Phys. Rev. C 35, 1666 (1987). https://doi.org/10.1103/PhysRevC.35.1666

    Article  ADS  Google Scholar 

  45. I. Bombaci, U. Lombardo, Asymmetric nuclear matter equation of state. Phys. Rev. C 44, 1892 (1991). https://doi.org/10.1103/PhysRevC.44.1892

    Article  ADS  Google Scholar 

  46. J. Rizzo, M. Colonna, M. Di Toro et al., Transport properties of isospin effective mass splitting. Nucl. Phys. A 732, 202 (2004). https://doi.org/10.1016/j.nuclphysa.2003.11.057

    Article  ADS  Google Scholar 

  47. C.B. Das, S. Das Gupta, C. Gale et al., Momentum dependence of symmetry potential in asymmetric nuclear matter for transport model calculations. Phys. Rev. C 67, 034611 (2003). https://doi.org/10.1103/PhysRevC.67.034611

    Article  ADS  Google Scholar 

  48. B.A. Li, C.B. Das, S. Das Gupta et al., Effects of momentum-dependent symmetry potential on heavy-ion collisions induced by neutron-rich nuclei. Nucl. Phys. A 735, 563 (2004). https://doi.org/10.1016/j.nuclphysa.2004.02.016

    Article  ADS  Google Scholar 

  49. B.A. Li, C.B. Das, S. Das Gupta et al., Momentum dependence of the symmetry potential and nuclear reactions induced by neutron-rich nuclei at RIA. Phys. Rev. C 69, 011603(R) (2004). https://doi.org/10.1103/PhysRevC.69.011603

    Article  ADS  Google Scholar 

  50. L.W. Chen, C.M. Ko, B.A. Li, Determination of the stiffness of the nuclear symmetry energy from isospin diffusion. Phys. Rev. Lett. 94, 032701 (2005). https://doi.org/10.1103/PhysRevLett.94.032701

    Article  ADS  Google Scholar 

  51. Z.Q. Feng, Momentum dependence of the symmetry potential and its influence on nuclear reactions. Phys. Rev. C 84, 024610 (2011). https://doi.org/10.1103/PhysRevC.84.024610

    Article  ADS  Google Scholar 

  52. Z.Q. Feng, Nuclear in-medium effects and collective flows in heavy-ion collisions at intermediate energies. Phys. Rev. C 85, 014604 (2012). https://doi.org/10.1103/PhysRevC.85.014604

    Article  ADS  Google Scholar 

  53. F. Zhang, J. Su, Probing neutron-proton effective mass splitting using nuclear stopping and isospin mix in heavy-ion collisions in GeV energy region. Nucl. Sci. Tech. 31, 77 (2020). https://doi.org/10.1007/s41365-020-00787-6

    Article  Google Scholar 

  54. T.H.R. Skyrme, The effective nuclear potential. Nucl. Phys. 9, 615 (1959). https://doi.org/10.1016/0029-5582(58)90345-6

    Article  MATH  Google Scholar 

  55. Y.Z. Wang, Y. Li, C. Qi et al., Pairing effects on bubble nuclei. Chin. Phys. Lett. 36, 032101 (2019). https://doi.org/10.1088/0256-307X/36/3/032101

    Article  ADS  Google Scholar 

  56. D. Vautherin, D.M. Brink, Hartree–Fock calculations with Skyrme’s interaction. I. Spherical nuclei. Phys. Rev. C 5, 626 (2012). https://doi.org/10.1103/PhysRevC.5.626

  57. D.M. Brink, E. Boeker, Effective interactions for Hartree–Fock calculations. Nucl. Phys. A 91, 1 (1967). https://doi.org/10.1016/0375-9474(67)90446-0

    Article  ADS  Google Scholar 

  58. D. Gogny, R. Padjen, The propagation and damping of the collective modes in nuclear matter. Nucl. Phys. A 293, 365 (1977). https://doi.org/10.1016/0375-9474(77)90104-X

    Article  ADS  Google Scholar 

  59. J. Dechargé, M. Girod, D. Gogny, Self consistent calculations and quadrupole moments of even Sm isotopes. Phys. Lett. B 55, 361 (1975). https://doi.org/10.1016/0370-2693(75)90359-7

    Article  ADS  Google Scholar 

  60. J. Boguta, A.R. Bodmoer, Relativistic calculation of nuclear matter and the nuclear surface. Nucl. Phys. A 292, 413 (1977). https://doi.org/10.1016/0375-9474(77)90626-1

    Article  ADS  MathSciNet  Google Scholar 

  61. F. Ouyang, B.B. Liu, W. Chen, Nuclear symmetry energy from a relativistic mean field theory. Chin. Phys. Lett. 30, 092101 (2013). https://doi.org/10.1088/0256-307X/30/9/092101

    Article  ADS  Google Scholar 

  62. M. Dutra, O. Lourenço, J.S. Sá Martins et al., Skyrme interaction and nuclear matter constraints. Phys. Rev. C 85, 035201 (2012). https://doi.org/10.1103/PhysRevC.85.035201

    Article  ADS  Google Scholar 

  63. A.W. Steiner, M. Prakash, J.M. Lattimer et al., Isospin asymmetry in nuclei and neutron stars. Phys. Rep. 411, 325 (2005). https://doi.org/10.1016/j.physrep.2005.02.004

    Article  ADS  Google Scholar 

  64. B.K. Agrawal, S.K. Dhiman, R. Kumar, Exploring the extended density-dependent Skyrme effective forces for normal and isospin-rich nuclei to neutron stars. Phys. Rev. C 73, 034319 (2006). https://doi.org/10.1103/PhysRevC.73.034319

    Article  ADS  Google Scholar 

  65. B.K. Agrawal, S. Shlomo, V.K. Au, Determination of the parameters of a Skyrme type effective interaction using the simulated annealing approach. Phys. Rev. C 72, 014310 (2005). https://doi.org/10.1103/PhysRevC.72.014310

    Article  ADS  Google Scholar 

  66. L.G. Cao, U. Lombardo, C.W. Shen et al., From Brueckner approach to Skyrme-type energy density functional. Phys. Rev. C 73, 014313 (2006). https://doi.org/10.1103/PhysRevC.73.014313

    Article  ADS  Google Scholar 

  67. L.W. Chen, C.M. Ko, B.A. Li et al., Density slope of the nuclear symmetry energy from the neutron skin thickness of heavy nuclei. Phys. Rev. C 82, 024321 (2010). https://doi.org/10.1103/PhysRevC.82.024321

    Article  ADS  Google Scholar 

  68. M. Rashdan, A Skyrme parametrization based on nuclear matter BHF calculations. Mod. Phys. Lett. A 15, 1287 (2000). https://doi.org/10.1142/S0217732300001663

    Article  ADS  Google Scholar 

  69. F. Tondeur, M. Brack, M. Farine et al., Static nuclear properties and the parametrisation of Skyrme forces. Nucl. Phys. A 420, 297 (1984). https://doi.org/10.1016/0375-9474(84)90444-5

    Article  ADS  Google Scholar 

  70. B.A. Brown, G. Shen, G.C. Hillhouse et al., Neutron skin deduced from antiprotonic atom data. Phys. Rev. C 76, 034305 (2007). https://doi.org/10.1103/PhysRevC.76.034305

    Article  ADS  Google Scholar 

  71. P.A.M. Guichon, H.H. Matevosyan, N. Sandulescu et al., Physical origin of density dependent forces of Skyrme type within the quark meson coupling model. Nucl. Phys. A 772, 1 (2006). https://doi.org/10.1016/j.nuclphysa.2006.04.002

    Article  ADS  Google Scholar 

  72. P. Klüpfel, P.-G. Reinhard, T.J. Bürvenich et al., Variations on a theme by Skyrme: a systematic study of adjustments of model parameters. Phys. Rev. C 79, 034310 (2009). https://doi.org/10.1103/PhysRevC.79.034310

    Article  ADS  Google Scholar 

  73. J.F. Berger, M. Girod, D. Gogny, Time-dependent quantum collective dynamics applied to nuclear fission. Comput. Phys. Commun. 63, 365 (1991). https://doi.org/10.1016/0010-4655(91)90263-K

    Article  ADS  MATH  Google Scholar 

  74. F. Chappert, M. Girod, S. Hilaire, Towards a new Gogny force parameterization: impact of the neutron matter equation of state. Phys. Lett. B 668, 420 (2008). https://doi.org/10.1016/j.physletb.2008.09.017

    Article  ADS  Google Scholar 

  75. S. Goriely, S. Hilaire, M. Girod et al., First Gogny–Hartree–Fock–Bogoliubov nuclear mass model. Phys. Rev. Lett. 102, 242501 (2009). https://doi.org/10.1103/PhysRevLett.102.242501

    Article  ADS  Google Scholar 

  76. A.M. Lane, Isobaric spin dependence of the optical potential and quasi-elastic (p, n) reactions. Nucl. Phys. 35, 676 (1962). https://doi.org/10.1016/0029-5582(62)90153-0

    Article  Google Scholar 

  77. L.W. Chen, B.J. Cai, C.M. Ko et al., Higher-order effects on the incompressibility of isospin asymmetric nuclear matter. Phys. Rev. C 80, 014322 (2009). https://doi.org/10.1103/PhysRevC.80.014322

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Jie Liu, Chao Gao, Niu Wan and Chang Xu. The first draft of the manuscript was written by Jie Liu and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Chang Xu.

Additional information

This work was supported by the National Natural Science Foundation of China (No. 11822503).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Gao, C., Wan, N. et al. Basic quantities of the equation of state in isospin asymmetric nuclear matter. NUCL SCI TECH 32, 117 (2021). https://doi.org/10.1007/s41365-021-00955-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-021-00955-2

Keywords

Navigation