Skip to main content
Log in

Probing granular inhomogeneity of a particle-emitting source by imaging two-pion Bose–Einstein correlations

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Using the source imaging technique in two-pion interferometry, we study the image of the hydrodynamic particle-emitting source with the HIJING initial conditions for relativistic heavy-ion collisions on an event-by-event basis. It is shown that the initial-state fluctuations may give rise to bumpy structures of the medium during hydrodynamical evolution, which affects the two-pion emission space and leads to a visible two-tiered shape in the source function imaged using the two-pion Bose–Einstein correlations. This two-tiered shape can be understood within a similar but more analytic granular source model and is found to be closely related to the introduced quantity \(\xi\), which characterizes the granular inhomogeneity of the source. By fitting the imaged source function with a granular source parametrization, we extract the granular inhomogeneity of the hydrodynamic source, which is found to be sensitive to both the Gaussian smearing width of the HIJING initial condition and the centrality of the collisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. U.A. Wiedemann, U. Heinz, Particle interferometry for relativistic heavy ion collisions. Phys. Rep. 319, 145 (1999). https://doi.org/10.1016/S0370-1573(99)00032-0

    Article  Google Scholar 

  2. R.M. Weiner, Boson interferometry in high-energy physics. Phys. Rep. 327, 249 (2000). https://doi.org/10.1016/S0370-1573(99)00114-3

    Article  Google Scholar 

  3. M.A. Lisa, S. Pratt, R. Soltz et al., Femtoscopy in relativistic heavy ion collisions. Ann. Rev. Nucl. Part. Sci. 55, 357 (2005). https://doi.org/10.1146/annurev.nucl.55.090704.151533

    Article  Google Scholar 

  4. A.G. Yang, Y. Zhang, L. Cheng et al., Squeezed back-to-back correlation of D0D0 in relativistic heavy-ion collisions. Chin. Phys. Lett. 35, 052501 (2018). https://doi.org/10.1088/0256-307X/35/5/052501

    Article  Google Scholar 

  5. L. Zhou, D.Q. Fang, Effect of source size and emission time on the pCp momentum correlation function in the two-proton emission process. Nucl. Sci. Tech. 31, 52 (2020). https://doi.org/10.1007/s41365-020-00759-w

    Article  Google Scholar 

  6. D.A. Brown, P. Danielewicz, Imaging of sources in heavy ion reactions. Phys. Lett. B 398, 252 (1997). https://doi.org/10.1016/S0370-2693(97)00251-7

    Article  Google Scholar 

  7. D.A. Brown, A. Enokizono, M. Heffner et al., Imaging three dimensional two-particle correlations for heavy-ion reaction studies. Phys. Rev. C 72, 054902 (2005). https://doi.org/10.1103/PhysRevC.72.054902

    Article  Google Scholar 

  8. Y. Ren, Q. Feng, W.N. Zhang et al., Analysis of the image of pion-emitting sources in the source center-of-mass frame. Eur. Phys. J. A 53, 163 (2017). https://doi.org/10.1140/epja/i2017-12351-1

    Article  Google Scholar 

  9. S.S. Adler et al., [PHENIX Collaboration], Evidence for a long-range component in the pion emission source in Au + Au collisions at \(\sqrt{{s}_{NN}}\) = 200-GeV. Phys. Rev. Lett. 98, 132301 (2007). https://doi.org/10.1103/PhysRevLett.98.132301

  10. S. Afanasiev et al., [PHENIX Collaboration], Source breakup dynamics in Au+Au collisions at \(\sqrt{{s}_{NN}}\) = 200-GeV via three-dimensional two-pion source imaging. Phys. Rev. Lett. 100, 232301 (2008). https://doi.org/10.1103/PhysRevLett.100.232301

  11. C. Alt et al. [NA49 Collaboration], Three-dimensional two-pion source image from Pb+Pb Collisions at \(\sqrt{{s}_{NN}}\) = 17.3-GeV: New constraints for source breakup dynamics. Phys. Lett. B 685, 41 (2010). https://doi.org/10.1016/j.physletb.2010.01.029

  12. A. Adare, M. Luzum, H. Petersen, Initial state fluctuations and final state correlations: status and open questions. Phys. Scr. 87, 048001 (2013). https://doi.org/10.1088/0031-8949/87/04/048001

    Article  Google Scholar 

  13. L. Pang, Q. Wang, X.N. Wang, Effects of initial flow velocity fluctuation in event-by-event (3+1)D hydrodynamics. Phys. Rev. C 86, 024911 (2012). https://doi.org/10.1103/PhysRevC.86.024911

    Article  Google Scholar 

  14. C. Gale, S. Jeon, B. Schenke et al., Event-by-event anisotropic flow in heavy-ion collisions from combined Yang-Mills and viscous fluid dynamics. Phys. Rev. Lett. 110, 012302 (2013). https://doi.org/10.1016/S0370-1573(99)00032-01

    Article  Google Scholar 

  15. Z.T. Yang, W.N. Zhang, L. Huo et al., Imaging of granular sources in high energy heavy ion collisions. J. Phys. G 36, 015113 (2009). https://doi.org/10.1016/S0370-1573(99)00032-02

    Article  Google Scholar 

  16. Y. Hu, W.N. Zhang, Y.Y. Ren, Fluctuations in pion elliptic flow, triangular flow, and HBT correlation functions in ultrarelativistic heavy-ion collisions. J. Phys. G 42, 045105 (2015). https://doi.org/10.1016/S0370-1573(99)00032-03

    Article  Google Scholar 

  17. X.N. Wang, M. Gyulassy, HIJING: a Monte Carlo model for multiple jet production in p p, p A, and A collisions. Phys. Rev. D 44, 3501 (1991). https://doi.org/10.1103/PhysRevD.44.3501

    Article  Google Scholar 

  18. X.N. Wang, pQCD based approach to parton production and equilibration in high-energy nuclear collisions. Phys. Rep. 280, 287 (1997). https://doi.org/10.1016/S0370-1573(96)00022-1

    Article  Google Scholar 

  19. H. Song, S.A. Bass, U. Heinz, et al., 200 A GeV Au + Au collisions serve a nearly perfect quark-gluon liquid. Phys. Rev. Lett. 106, 192301 (2011). Erratum: [Phys. Rev. Lett. 109, 139904 (2012)]. https://doi.org/10.1103/PhysRevLett.106.192301, https://doi.org/10.1103/PhysRevLett.109.139904

  20. M. Gyulassy, D.H. Rischke, B. Zhang, Hot spots and turbulent initial conditions of quark–gluon plasmas in nuclear collisions. Nucl. Phys. A 613, 397 (1997). https://doi.org/10.1016/S0375-9474(96)00416-2

    Article  Google Scholar 

  21. W. Zhao, Y. Zhou, H. Xu et al., Hydrodynamic collectivity in proton Cproton collisions at 13 TeV. Phys. Lett. B 780, 495 (2018). https://doi.org/10.1016/S0370-1573(99)00032-07

    Article  Google Scholar 

  22. R. Preghenella et al., [ALICE Collaboration], Identifled-particle production and spectra with the ALICE detector in Pp and Pb C Pb collisions at the LHC. Acta. Phys. Pol. B 43, 555 (2012). https://doi.org/10.5506/APhysPolB.43.555

  23. D.H. Rischke, Fluid dynamics for relativistic nuclear collisions. Lect. Notes Phys. 516, 21 (1999). https://doi.org/10.1016/S0370-1573(99)00032-08

    Article  Google Scholar 

  24. C. Shen, U. Heinz, P. Huovinen et al., Systematic parameter study of hadron spectra and elliptic flow from viscous hydrodynamic simulations of Au + Au collisions at \(\sqrt{s_{NN}}=200\) GeV. Phys. Rev. C 82, 054904 (2010). https://doi.org/10.1103/PhysRevC.82.054904

    Article  Google Scholar 

  25. D.A. Brown, S.Y. Panitkin, G. Bertsch, Extracting particle freezeout densities and entropies from sources imaged in heavy ion reactions. Phys. Rev. C 62, 014904 (2000). https://doi.org/10.1016/S0370-1573(99)00114-30

    Article  Google Scholar 

  26. S. Pratt, T. Csörgo, J. Zimáyi, Detailed predictions for two pion correlations in ultrarelativistic heavy ion collisions. Phys. Rev. C 42, 2646 (1990). https://doi.org/10.1016/S0370-1573(99)00114-31

    Article  Google Scholar 

  27. S.E. Koonin, Proton pictures of high-energy nuclear collisions. Phys. Lett. 70B, 43 (1977). https://doi.org/10.1016/S0370-1573(99)00114-32

    Article  Google Scholar 

  28. D.A. Brown, P. Danielewicz, Observing nongaussian sources in heavy ion reactions. Phys. Rev. C 64, 014902 (2001). https://doi.org/10.1016/S0370-1573(99)00114-33

    Article  Google Scholar 

  29. C.Y. Wong, W.N. Zhang, Signature of granular structures by single-event intensity interferometry. Phys. Rev. C 70, 064904 (2004). https://doi.org/10.1016/S0370-1573(99)00114-34

    Article  Google Scholar 

  30. W.N. Zhang, Z.T. Yang, Y.Y. Ren, Characteristic quantities of pion-emitting sources extracted by model-independent analysis in relativistic heavy-ion collisions. Phys. Rev. C 80, 044908 (2009). https://doi.org/10.1016/S0370-1573(99)00114-35

    Article  Google Scholar 

  31. P. Romatschke, U. Romatschke, Viscosity information from relativistic nuclear collisions: how perfect is the fluid observed at RHIC? Phys. Rev. Lett. 99, 172301 (2007). https://doi.org/10.1103/PhysRevLett.99.172301

    Article  Google Scholar 

  32. H. Song, U. Heinz, Suppression of elliptic flow in a minimally viscous quark-gluon plasma. Phys. Lett. B 658, 279 (2008). https://doi.org/10.1016/S0370-1573(99)00114-37

    Article  Google Scholar 

  33. S. Nickerson, T. Csörgo, D. Kiang, Testing the core halo model on Bose–Einstein correlation functions. Phys. Rev. C 57, 3251 (1998). https://doi.org/10.1103/PhysRevC.57.3251

    Article  Google Scholar 

  34. B.B. Abelev et al. [ALICE Collaboration], Two- and three-pion quantum statistics correlations in Pb–Pb collisions at \(\sqrt{{s}_{NN}} =\) 2.76 TeV at the CERN Large Hadron Collider. Phys. Rev. C 89, 024911 (2014). https://doi.org/10.1103/PhysRevC.89.024911

  35. J. Adam et al., [ALICE Collaboration], Multipion Bose–Einstein correlations in pp, p -Pb, and Pb–Pb collisions at energies available at the CERN Large Hadron Collider. Phys. Rev. C 93, 054908 (2016). https://doi.org/10.1103/PhysRevC.93.054908

  36. C. Plumberg, U. Heinz, Hanbury–Brown–Twiss correlation functions and radii from event-by-event hydrodynamics. Phys. Rev. C 98, 034910 (2018). https://doi.org/10.1103/PhysRevC.98.034910

    Article  Google Scholar 

  37. D. Kincses, M.I. Nagy, M. Csand, Coulomb and strong interactions in the final state of HBT correlations for Lévy type source functions. arXiv:1912.01381 [hep-ph]

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Li-Ya Li, Peng Ru, and Ying Hu. The first draft of the manuscript was written by Ying Hu, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ying Hu.

Additional information

This work was supported in part by the Research Start-up Funding of Hubei University of Education (No. 201801), Hubei Provincial Natural Science Foundation of China (No. 2020CFB697), the China Postdoctoral Science Foundation (No. 2019M652929), the MOE Key Laboratory of Quark and Lepton Physics (Central China Normal University) (No. QLPL201802).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, LY., Ru, P. & Hu, Y. Probing granular inhomogeneity of a particle-emitting source by imaging two-pion Bose–Einstein correlations. NUCL SCI TECH 32, 19 (2021). https://doi.org/10.1007/s41365-021-00853-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-021-00853-7

Keywords

Navigation