Skip to main content
Log in

Entanglement wedge cross-section with Gauss-Bonnet corrections and thermal quench

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The entanglement wedge cross section (EWCS) is numerically investigated statically and dynamically in a five-dimension AdS-Vaidya spacetime with Gauss-Bonnet (GB) corrections, focusing on two identical rectangular strips on the boundary. In the static case, EWCS increases as the GB coupling constant α increases and disentangles at small separation between two strips for smaller α. For the dynamic case, such a monotonic relationship between EWCS and α holds but the two strips no longer disentangle monotonically as in the static case. In the early thermal quenching stage, the disentanglement occurs at smaller α with larger separations. Two strips then disentangle at larger separation with larger α as time evolves. Our results indicate that the higher-order derivative corrections, like the entanglement measure in the dual boundary theory, also have nontrivial effects on the EWCS evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Maldacena, Int. J. Theor. Phys. 38, 1113 (1999), arXiv: hep-th/9711200.

    Article  Google Scholar 

  2. S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Phys. Lett. B 428, 105 (1998), arXiv: hep-th/9802109.

    Article  ADS  MathSciNet  Google Scholar 

  3. E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998), arXiv: hep-th/9802150.

    Article  ADS  MathSciNet  Google Scholar 

  4. S. Ryu, and T. Takayanagi, Phys. Rev. Lett. 96, 181602 (2006), arXiv: hep-th/0603001.

    Article  ADS  MathSciNet  Google Scholar 

  5. T. Takayanagi, Class. Quantum Grav. 29, 153001 (2012), arXiv: 1204.2450.

    Article  ADS  Google Scholar 

  6. A. Lewkowycz, and J. Maldacena, J. High Energ. Phys. 2013, 90 (2013).

    Article  Google Scholar 

  7. V. E. Hubeny, M. Rangamani, and T. Takayanagi, J. High Energ. Phys. 2007, 062 (2007), arXiv: 0705.0016.

    Article  ADS  Google Scholar 

  8. X. Dong, A. Lewkowycz, and M. Rangamani, J. High Energ. Phys. 2016, 28 (2016).

    Article  Google Scholar 

  9. P. Calabrese, J. Cardy, and E. Tonni, J. Stat. Mech. 2009, P11001 (2009), arXiv: 0905.2069.

    Article  Google Scholar 

  10. P. Calabrese, J. Cardy, and E. Tonni, J. Stat. Mech. 2011, P01021 (2011), arXiv: 1011.5482.

    Google Scholar 

  11. B. M. Terhal, M. Horodecki, D. W. Leung, and D. P. DiVincenzo, J. Math. Phys. 43, 4286 (2002), arXiv: quant-ph/0202044.

    Article  ADS  MathSciNet  Google Scholar 

  12. S. Dutta, and T. Faulkner, arXiv: 1905.00577.

  13. K. Tamaoka, Phys. Rev. Lett. 122, 141601 (2019), arXiv: 1809.09109.

    Article  ADS  Google Scholar 

  14. M. B. Plenio, Phys. Rev. Lett. 95, 090503 (2005), arXiv: quant-ph/0505071.

    Article  ADS  Google Scholar 

  15. K. Umemoto, and T. Takayanagi, Nat. Phys. 14, 573 (2018), arXiv: 1708.09393.

    Article  Google Scholar 

  16. Y. Kusuki, J. Kudler-Flam, and S. Ryu, Phys. Rev. Lett. 123, 131603 (2019), arXiv: 1907.07824.

    Article  ADS  MathSciNet  Google Scholar 

  17. C. A. Agòn, J. de Boer, and J. F. Pedraza, J. High Energ. Phys. 2019(5), 75 (2019).

    Article  Google Scholar 

  18. R. Espíndola, A. Güijosa, and J. F. Pedraza, Eur. Phys. J. C 78, 646 (2018), arXiv: 1804.05855.

    Article  ADS  Google Scholar 

  19. R. Q. Yang, C. Y. Zhang, and W. M. Li, J. High Energ. Phys. 2019, 114 (2019).

    Article  Google Scholar 

  20. P. Liu, Y. Ling, C. Niu, and J. P. Wu, J. High Energ. Phys. 2019, 71 (2019).

    Google Scholar 

  21. M. Ghodrati, X. M. Kuang, B. Wang, C. Y. Zhang, and Y. T. Zhou, J. High Energ. Phys. 2019, 9 (2019).

    Article  Google Scholar 

  22. K. B. Velni, M. R. M. Mozaffar, and M. H. Vahidinia, J. High Energ. Phys. 2019(5), 200 (2019).

    Article  Google Scholar 

  23. S. Chakrabortty, S. Pant, and K. Sil, J. High Energ. Phys. 2020, 61 (2020).

    Article  Google Scholar 

  24. K. B. Velni, M. R. M. Mozaffar, and M. H. Vahidinia, J. High Energ. Phys. 2020, 129 (2020).

    Article  Google Scholar 

  25. G. Fu, P. Liu, H. Gong, X. M. Kuang, and J. P. Wu, Phys. Rev. D 104, 026016 (2021), arXiv: 2007.06001.

    Article  ADS  Google Scholar 

  26. H. Gong, P. Liu, G. Fu, X. M. Kuang, and J. P. Wu, Chin. Phys. C 45, 065101 (2021), arXiv: 2009.00450.

    Article  ADS  Google Scholar 

  27. A. Lala, Phys. Rev. D 102, 126026 (2020), arXiv: 2008.06154.

    Article  ADS  MathSciNet  Google Scholar 

  28. P. Liu, and J. P. Wu, Phys. Rev. D 104, 046017 (2021), arXiv: 2009.01529.

    Article  ADS  Google Scholar 

  29. N. Jokela, and J. G. Subils, J. High Energ. Phys. 2021, 147 (2021).

    Article  Google Scholar 

  30. S. Khoeini-Moghaddam, F. Omidi, and C. Paul, J. High Energ. Phys. 2021, 121 (2021).

    Article  Google Scholar 

  31. M. Sahraei, M. J. Vasli, M. R. M. Mozaffar, and K. B. Velni, J. High Energ. Phys. 2021, 38 (2021).

    Article  Google Scholar 

  32. V. Balasubramanian, A. Bernamonti, J. de Boer, N. Copland, B. Craps, E. Keski-Vakkuri, B. Müller, A. Scháfer, M. Shigemori, and W. Staessens, Phys. Rev. Lett. 106, 191601 (2011), arXiv: 1012.4753.

    Article  ADS  Google Scholar 

  33. V. Balasubramanian, A. Bernamonti, J. de Boer, N. Copland, B. Craps, E. Keski-Vakkuri, B. Müller, A. Schäfer, M. Shigemori, and W. Staessens, Phys. Rev. D 84, 026010 (2011), arXiv: 1103.2683.

    Article  ADS  Google Scholar 

  34. Y. Kusuki, and K. Tamaoka, J. High Energ. Phys. 2020, 17 (2020).

    Article  Google Scholar 

  35. Y. Kusuki, and K. Tamaoka, Phys. Lett. B 814, 136105 (2021), arXiv: 1907.06646.

    Article  Google Scholar 

  36. M. Moosa, J. High Energ. Phys. 2020, 82 (2020).

    Article  MathSciNet  Google Scholar 

  37. J. Kudler-Flam, Y. Kusuki, and S. Ryu, J. High Energ. Phys. 2020, 74 (2020).

    Article  Google Scholar 

  38. O. Aharony, J. Pawelczyk, S. Theisen, and S. Yankielowicz, Phys. Rev. D 60, 066001 (1999), arXiv: hep-th/9901134.

    Article  ADS  MathSciNet  Google Scholar 

  39. O. Aharony, S. S. Gubser, J. Maldacena, H. Ooguri, and Y. Oz, Phys. Rep. 323, 183 (2000), arXiv: hep-th/9905111.

    Article  ADS  MathSciNet  Google Scholar 

  40. X. O. Camaño, arXiv: 1509.08129.

  41. R. G. Cai, Phys. Rev. D 65, 084014 (2002), arXiv: hep-th/0109133.

    Article  ADS  MathSciNet  Google Scholar 

  42. A. E. Dominguez, and E. Gallo, Phys. Rev. D 73, 064018 (2006), arXiv: gr-qc/0512150.

    Article  ADS  MathSciNet  Google Scholar 

  43. M. Brigante, H. Liu, R. C. Myers, S. Shenker, and S. Yaida, Phys. Rev. Lett. 100, 191601 (2008), arXiv: 0802.3318.

    Article  ADS  Google Scholar 

  44. M. Brigante, H. Liu, R. C. Myers, S. Shenker, and S. Yaida, Phys. Rev. D 77, 126006 (2008), arXiv: 0712.0805.

    Article  ADS  Google Scholar 

  45. L. Y. Hung, R. C. Myers, and M. Smolkin, J. High Energ. Phys. 2011, 25 (2011).

    Article  Google Scholar 

  46. J. de Boer, M. Kulaxizi, and A. Parnachev, J. High Energ. Phys. 2011(7), 109 (2011).

    Article  Google Scholar 

  47. W. Guo, S. He, and J. Tao, J. High Energ. Phys. 2013, 50 (2013).

    Article  Google Scholar 

  48. X. Dong, J. High Energ. Phys. 2014, 44 (2014).

    Article  ADS  Google Scholar 

  49. F. M. Haehl, E. Hijano, O. Parrikar, and C. Rabideau, Phys. Rev. Lett. 120, 201602 (2018), arXiv: 1712.06620.

    Article  ADS  MathSciNet  Google Scholar 

  50. M. R. Tanhayi, and R. Vazirian, Eur. Phys. J. C 78, 162 (2018), arXiv: 1610.08080.

    Article  ADS  Google Scholar 

  51. Y. Z. Li, S. F. Wu, Y. Q. Wang, and G. H. Yang, J. High Energ. Phys. 2013, 57 (2013).

    Article  Google Scholar 

  52. Y. Z. Li, S. F. Wu, and G. H. Yang, Phys. Rev. D 88, 086006 (2013), arXiv: 1309.3764.

    Article  ADS  Google Scholar 

  53. X. X. Zeng, X. M. Liu, and W. B. Liu, J. High Energ. Phys. 2014, 31 (2014).

    Article  Google Scholar 

  54. S. J. Zhang, B. Wang, E. Abdalla, and E. Papantonopoulos, Phys. Rev. D 91, 106010 (2015), arXiv: 1412.7073.

    Article  ADS  MathSciNet  Google Scholar 

  55. Y. Sun, H. Xu, and L. Zhao, J. High Energ. Phys. 2016, 60 (2016).

    Article  Google Scholar 

  56. E. Caceres, M. Sanchez, and J. Virrueta, J. High Energ. Phys. 2017, 127 (2017).

    Article  Google Scholar 

  57. H. Ghaffarnejad, E. Yaraie, and M. Farsam, Gen. Relativ. Gravit. 51, 10 (2019), arXiv: 1806.05976.

    Article  ADS  Google Scholar 

  58. A. Buchel, and R. C. Myers, J. High Energ. Phys. 2009, 016 (2009), arXiv: 0906.2922.

    Article  Google Scholar 

  59. D. M. Hofman, Nucl. Phys. B 823, 174 (2009), arXiv: 0907.1625.

    Article  ADS  Google Scholar 

  60. X. H. Ge, and S. J. Sin, J. High Energ. Phys. 2009, 051 (2009), arXiv: 0903.2527.

    Article  Google Scholar 

  61. M. M. Wolf, F. Verstraete, M. B. Hastings, and J. I. Cirac, Phys. Rev. Lett. 100, 070502 (2008), arXiv: 0704.3906.

    Article  ADS  MathSciNet  Google Scholar 

  62. N. Engelhardt, and A. C. Wall, J. High Energ. Phys. 2015, 73 (2015).

    Article  Google Scholar 

  63. Z. Fu, A. Maloney, D. Marolf, H. Maxfield, and Z. Wang, J. High Energ. Phys. 2018, 72 (2018).

    Article  Google Scholar 

  64. M. Freedman, and M. Headrick, Commun. Math. Phys. 352, 407 (2017), arXiv: 1604.00354.

    Article  ADS  Google Scholar 

  65. R. Abt, J. Erdmenger, H. Hinrichsen, C. M. Melby-Thompson, R. Meyer, C. Northe, and I. A. Reyes, Fortschr. Phys. 66, 1800034 (2018), arXiv: 1710.01327.

    Article  MathSciNet  Google Scholar 

  66. S. X. Cui, P. Hayden, T. He, M. Headrick, B. Stoica, and M. Walter, Commun. Math. Phys. 376, 609 (2020), arXiv: 1808.05234.

    Article  ADS  Google Scholar 

  67. J. Harper, M. Headrick, and A. Rolph, J. High Energ. Phys. 2018, 168 (2018).

    Article  ADS  Google Scholar 

  68. M. R. Tanhayi, J. High Energ. Phys. 2016(3), 202 (2016), arXiv: 1512.04104.

    Article  MathSciNet  Google Scholar 

  69. A. Allais, and E. Tonni, J. High Energ. Phys. 2012, 102 (2012).

    Article  Google Scholar 

  70. M. Alishahiha, M. R. M. Mozaffar, and M. R. Tanhayi, J. High Energ. Phys. 2015, 165 (2015).

    Article  Google Scholar 

  71. B. Chen, W. M. Li, R. Q. Yang, C. Y. Zhang, and S. J. Zhang, J. High Energ. Phys. 2018, 34 (2018).

    Article  Google Scholar 

  72. Y. Ling, Y. Liu, and C. Y. Zhang, Eur. Phys. J. C 79, 194 (2019), arXiv: 1808.10169.

    Article  ADS  Google Scholar 

  73. Y. T. Zhou, M. Ghodrati, X. M. Kuang, and J. P. Wu, Phys. Rev. D 100, 066003 (2019), arXiv: 1907.08453.

    Article  ADS  Google Scholar 

  74. Y. Ling, Y. Liu, C. Niu, Y. Xiao, and C. Y. Zhang, J. High Energ. Phys. 2019, 39 (2019).

    Article  Google Scholar 

  75. Y. S. An, R. G. Cai, and Y. Peng, Phys. Rev. D 98, 106013 (2018), arXiv: 1805.07775.

    Article  ADS  MathSciNet  Google Scholar 

  76. X. X. Zeng, and W. B. Liu, Phys. Lett. B 726, 481 (2013), arXiv: 1305.4841.

    Article  ADS  MathSciNet  Google Scholar 

  77. S. He, L. F. Li, and X. X. Zeng, Nucl. Phys. B 915, 243 (2017), arXiv: 1608.04208.

    Article  ADS  Google Scholar 

  78. H. Liu, and S. J. Suh, Phys. Rev. D 89, 066012 (2014), arXiv: 1311.1200.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Mei Kuang.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11947067, 12005077, and 11705161). Y.-Z. Li was also supported by the Jiangsu University of Science and Technology for Doctoral Research (Grant No. 1052931902). X.-M. Kuang was also supported by the Fok Ying Tung Education Foundation (Grant No. 171006), and Natural Science Foundation of Jiangsu Province (Grant No. BK20211601).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YZ., Zhang, CY. & Kuang, XM. Entanglement wedge cross-section with Gauss-Bonnet corrections and thermal quench. Sci. China Phys. Mech. Astron. 64, 120413 (2021). https://doi.org/10.1007/s11433-021-1791-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-021-1791-1

PACS number(s)

Navigation