Skip to main content
Log in

Superconductivity and strong spin-orbit coupling in a new noncentrosymmetric compound ThIrP

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

A new noncentrosymmetric phosphide ThIrP has been synthesized and characterized. X-ray diffraction analysis shows that this compound crystallizes in a LaPtSi-type tetragonal lattice (space group I41md, Z = 4), whose lattice parameters are a = b = 4.0676(1) Å, c = 14.3354(2) Å, and V = 237.191(8) Å3. Moreover, ThIrP is discovered to be an intermediately coupled, type-II superconductor with possibly multiple gaps below Tc = 5.07 K. The upper critical magnetic field, Sommerfield coefficient, and Ginzburg-Laudau parameter are determined based on physical property measurements, which are Bc2 = 0.83 T, γ = 7.5 mJ mol−1 K−2, and κGL = 7.5, respectively. The electronic band structure calculations point out nearly equal contributions of Ir and Th atoms on the density of states around the Fermi surface. In addition, the spin-orbit coupling induced band splitting reaches as large as 270 meV along the Γ-Z line. Our results suggest that ThIrP provides a platform to study the interplay between inversion-symmetry breaking, strong spin-orbit coupling, and superconductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. P. Gor’kov, and E. I. Rashba, Phys. Rev. Lett. 87, 037004 (2001), arXiv: cond-mat/0103449.

    Article  ADS  Google Scholar 

  2. E. Bauer, and M. Sigrist, Non-centrosymmetric Superconductors: Introduction and Overview (Springer-Verlag, Berlin, Heidelberg, 2012).

    Book  Google Scholar 

  3. F. Kneidinger, E. Bauer, I. Zeiringer, P. Rogl, C. Blaas-Schenner, D. Reith, and R. Podloucky, Physica C 514, 388 (2015).

    Article  ADS  Google Scholar 

  4. M. Smidman, M. B. Salamon, H. Q. Yuan, and D. F. Agterberg, Rep. Prog. Phys. 80, 036501 (2017), arXiv: 1609.05953.

    Article  ADS  Google Scholar 

  5. E. Bauer, G. Hilscher, H. Michor, C. Paul, E. W. Scheidt, A. Gribanov, Y. Seropegin, H. Noël, M. Sigrist, and P. Rogl, Phys. Rev. Lett. 92, 027003 (2004), arXiv: cond-mat/0308083.

    Article  ADS  Google Scholar 

  6. P. Badica, T. Kondo, and K. Togano, J. Phys. Soc. Jpn. 74, 1014 (2005).

    Article  ADS  Google Scholar 

  7. H. Q. Yuan, D. F. Agterberg, N. Hayashi, P. Badica, D. Vandervelde, K. Togano, M. Sigrist, and M. B. Salamon, Phys. Rev. Lett. 97, 017006 (2006), arXiv: cond-mat/0512601.

    Article  ADS  Google Scholar 

  8. E. Bauer, G. Rogl, X. Q. Chen, R. T. Khan, H. Michor, G. Hilscher, E. Royanian, K. Kumagai, D. Z. Li, Y. Y. Li, R. Podloucky, and P. Rogl, Phys. Rev. B 82, 064511 (2010), arXiv: 1007.0420.

    Article  ADS  Google Scholar 

  9. T. Grant, A. J. S. Machado, D. J. Kim, and Z. Fisk, Supercond. Sci. Technol. 27, 035004 (2014).

    Article  ADS  Google Scholar 

  10. J. K. Bao, J. Y. Liu, C. W. Ma, Z. H. Meng, Z. T. Tang, Y. L. Sun, H. F. Zhai, H. Jiang, H. Bai, C. M. Feng, Z. A. Xu, and G. H. Cao, Phys. Rev. X 5, 011013 (2015), arXiv: 1412.0067.

    Google Scholar 

  11. W. H. Lee, H. K. Zeng, Y. D. Yao, and Y. Y. Chen, Physica C 266, 138 (1996).

    Article  ADS  Google Scholar 

  12. M. N. Ali, Q. D. Gibson, T. Klimczuk, and R. J. Cava, Phys. Rev. B 89, 020505 (2014), arXiv: 1310.8368.

    Article  ADS  Google Scholar 

  13. E. M. Carnicom, W. Xie, T. Klimczuk, J. Lin, K. Górnicka, Z. Sobczak, N. P. Ong, and R. J. Cava, Sci. Adv. 4, eaar7969 (2018).

    Article  ADS  Google Scholar 

  14. W. Xie, P. R. Zhang, B. Shen, W. B. Jiang, G. M. Pang, T. Shang, C. Cao, M. Smidman, and H. Q. Yuan, Sci. China-Phys. Mech. Astron. 63, 237412 (2020), arXiv: 1912.01993.

    Article  ADS  Google Scholar 

  15. K. Górnicka, X. Gui, B. Wiendlocha, L. T. Nguyen, W. Xie, R. J. Cava, and T. Klimczuk, Adv. Funct. Mater. 31, 2007960 (2021).

    Article  Google Scholar 

  16. I. Bonalde, W. Bramer-Escamilla, and E. Bauer, Phys. Rev. Lett. 94, 207002 (2005).

    Article  ADS  Google Scholar 

  17. K. Izawa, Y. Kasahara, Y. Matsuda, K. Behnia, T. Yasuda, R. Settai, and Y. Onuki, Phys. Rev. Lett. 94, 197002 (2005), arXiv: cond-mat/0504350.

    Article  ADS  Google Scholar 

  18. M. Nishiyama, Y. Inada, and G. Zheng, Phys. Rev. Lett. 98, 047002 (2007), arXiv: cond-mat/0702130.

    Article  ADS  Google Scholar 

  19. T. Shang, M. Smidman, A. Wang, L. J. Chang, C. Baines, M. K. Lee, Z. Y. Nie, G. M. Pang, W. Xie, W. B. Jiang, M. Shi, M. Medarde, T. Shiroka, and H. Q. Yuan, Phys. Rev. Lett. 124, 207001 (2020), arXiv: 2004.10425.

    Article  ADS  Google Scholar 

  20. A. D. Hillier, J. Quintanilla, and R. Cywinski, Phys. Rev. Lett. 102, 117007 (2009), arXiv: 0901.3153.

    Article  ADS  Google Scholar 

  21. Z. Sun, M. Enayat, A. Maldonado, C. Lithgow, E. Yelland, D. C. Peets, A. Yaresko, A. P. Schnyder, and P. Wahl, Nat. Commun. 6, 6633 (2015), arXiv: 1407.5667.

    Article  ADS  Google Scholar 

  22. H. Kim, K. Wang, Y. Nakajima, R. Hu, S. Ziemak, P. Syers, L. Wang, H. Hodovanets, J. D. Denlinger, P. M. R. Brydon, D. F. Agterberg, M. A. Tanatar, R. Prozorov, and J. Paglione, Sci. Adv. 4, eaao4513 (2018).

    Article  ADS  Google Scholar 

  23. C. C. Liu, C. Lu, L. D. Zhang, X. Wu, C. Fang, and F. Yang, Phys. Rev. Res. 2, 033050 (2020), arXiv: 1909.00943.

    Article  Google Scholar 

  24. H. Barz, H. C. Ku, G. P. Meisner, Z. Fisk, and B. T. Matthias, Proc. Natl. Acad. Sci. 77, 3132 (1980).

    Article  ADS  Google Scholar 

  25. R. Müller, R. N. Shelton, J. W. Richardson Jr., and R. A. Jacobson, J. Less Common Met. 92, 177 (1983).

    Article  Google Scholar 

  26. I. Shirotani, Bull. Chem. Soc. Jpn. 76, 1291 (2003).

    Article  Google Scholar 

  27. I. Shirotani, M. Takaya, I. Kaneko, C. Sekine, and T. Yagi, in High pressure synthesis of new superconductors monip and morup with Tc of above 15 K: Advances in Superconductivity XII, edited by T. Yamashita, and K. Tanabe (Springer, Tokyo, 2000), pp. 101–103.

    Google Scholar 

  28. Y. Okamoto, T. Inohara, Y. Yamakawa, A. Yamakage, and K. Takenaka, J. Phys. Soc. Jpn. 85, 013704 (2016), arXiv: 1512.03864.

    Article  ADS  Google Scholar 

  29. Y. Qi, J. Guo, H. Lei, Z. Xiao, T. Kamiya, and H. Hosono, Phys. Rev. B 89, 024517(2014).

    Article  ADS  Google Scholar 

  30. B. H. Toby, J. Appl. Cryst 34, 210 (2001).

    Article  Google Scholar 

  31. G. Kresse, and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).

    Article  Google Scholar 

  32. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  33. A. Ptok, K. Domieracki, K. J. Kapcia, J. Lazewski, P. T. Jochym, M. Sternik, P. Piekarz, and D. Kaczorowski, Phys. Rev. B 100, 165130 (2019), arXiv: 1909.12669.

    Article  ADS  Google Scholar 

  34. B. Li, C. Q. Xu, W. Zhou, W. H. Jiao, R. Sankar, F. M. Zhang, H. H. Hou, X. F. Jiang, B. Qian, B. Chen, A. F. Bangura, and X. F. Xu, Sci. Rep. 8, 651 (2018).

    Article  ADS  Google Scholar 

  35. W. L. McMillan, Phys. Rev. 167, 331 (1968).

    Article  ADS  Google Scholar 

  36. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  37. A. M. Clogston, Phys. Rev. Lett. 9, 266 (1962).

    Article  ADS  Google Scholar 

  38. G. Xiao, S. Wu, B. Li, B. Liu, J. Wu, Y. Cui, Q. Zhu, G. Cao, and Z. Ren, Intermetallics 128, 106993 (2021).

    Article  Google Scholar 

  39. C. R. Hu, Phys. Rev. B 6, 1756 (1972).

    Article  ADS  Google Scholar 

  40. G. Mu, Y. Wang, L. Shan, and H. H. Wen, Phys. Rev. B 76, 064527 (2007), arXiv: 0708.3479.

    Article  ADS  Google Scholar 

  41. S. Y. Li, L. Taillefer, D. G. Hawthorn, M. A. Tanatar, J. Paglione, M. Sutherland, R. W. Hill, C. H. Wang, and X. H. Chen, Phys. Rev. Lett. 93, 056401 (2004), arXiv: cond-mat/0401099.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Ren.

Additional information

We acknowledge financial support by the foundation of Westlake University. The work at Zhejiang University is supported by the National Key Research Development Program of China (Grant No. 2017YFA0303002) and the Fundamental Research Funds for the Central Universities of China.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, G., Zhu, Q., Cui, Y. et al. Superconductivity and strong spin-orbit coupling in a new noncentrosymmetric compound ThIrP. Sci. China Phys. Mech. Astron. 64, 107411 (2021). https://doi.org/10.1007/s11433-021-1731-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-021-1731-3

Keywords

Navigation