Skip to main content
Log in

Electronic structure of LaIrIn5 and f-electron character in its related Ce-115 compounds

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

LaIrIn5 is a reference compound of the heavy-fermion superconductor CeIrIn5. The lack of f electrons in LaIrIn5 indicates that there should not be any f electron participating in the construction of its Fermi surface. Thus the electronic structure comparison between LaIrIn5 and CeIrIn5 provides a good platform to study the properties of f electrons. Here angle-resolved photoemission spectroscopy (ARPES) measurements and density functional theory (DFT) calculations are performed to study the electronic structures of LaIrIn5 and CeIrIn5. We find the valence band structures of the two materials are similar to each other, except for the absence of f bands in LaIrIn5. By analyzing the Fermi crossings of the three conduction bands of the two materials quantitatively, we find the volumes of the electron pockets α and β around the M′ point become larger from LaIrIn5 to CeIrIn5, while the hole pocket γ around the Γ′ point becomes smaller. Together with the calculation results, we confirm that this is mainly originated from the f-electron contribution, while the lattice-constant difference between LaIrIn5 and CeIrIn5 only has a finite influence. We also give a summary of the f-electron character in its related Ce-115 heavy fermion compounds. Our results may be essential for the complete microscopic understanding of the 115 compounds and the related heavy-fermion systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. R. Stewart, Rev. Mod. Phys. 56, 755 (1984).

    Article  ADS  Google Scholar 

  2. C. Pfleiderer, Rev. Mod. Phys. 81, 1551 (2009), arXiv: 0905.2625.

    Article  ADS  Google Scholar 

  3. Q. Si, S. Rabello, K. Ingersent, and J. L. Smith, Nature 413, 804 (2001), arXiv: cond-mat/0011477.

    Article  ADS  Google Scholar 

  4. J. L. Sarrao, L. A. Morales, J. D. Thompson, B. L. Scott, G. R. Stewart, F. Wastin, J. Rebizant, P. Boulet, E. Colineau, and G. H. Lander, Nature 420, 297 (2002).

    Article  ADS  Google Scholar 

  5. Q. Liu, B. Shen, M. Smidman, R. Li, Z. Y. Nie, X. Y. Xiao, Y. Chen, H. Lee, and H. Q. Yuan, Sci. China-Phys. Mech. Astron. 61, 077411 (2018), arXiv: 1804.05477.

    Article  ADS  Google Scholar 

  6. W. Wu, and J. Luo, Sci. China-Phys. Mech. Astron. 61, 127407 (2018).

    Article  ADS  Google Scholar 

  7. J. H. Shim, K. Haule, and G. Kotliar, Science 318, 1615 (2007), arXiv: 0801.0412.

    Article  ADS  Google Scholar 

  8. S. Paschen, T. Lühmann, S. Wirth, P. Gegenwart, O. Trovarelli, C. Geibel, F. Steglich, P. Coleman, and Q. Si, Nature 432, 881 (2004), arXiv: cond-mat/0411074.

    Article  ADS  Google Scholar 

  9. P. Gegenwart, Q. Si, and F. Steglich, Nat. Phys. 4, 186 (2008), arXiv: 0712.2045.

    Article  Google Scholar 

  10. Q. Si, and F. Steglich, Science 329, 1161 (2010), arXiv: 1102.4896.

    Article  ADS  Google Scholar 

  11. H. Q. Yuan, F. M. Grosche, M. Deppe, C. Geibel, G, Sparn, and F. Steglich, Science 302, 2104 (2003).

    Article  ADS  Google Scholar 

  12. P. Monthoux, D. Pines, and G. G. Lonzarich, Nature 450, 1177 (2007).

    Article  ADS  Google Scholar 

  13. G. Zheng, K. Tanabe, T. Mito, S. Kawasaki, Y. Kitaoka, D. Aoki, Y. Haga, and Y. Onuki, Phys. Rev. Lett. 86, 4664 (2001), arXiv: condmat/0102487.

    Article  ADS  Google Scholar 

  14. Q. Y. Chen, C. H. P. Wen, Q. Yao, K. Huang, Z. F. Ding, L. Shu, X. H. Niu, Y. Zhang, X. C. Lai, Y. B. Huang, G. B. Zhang, S. Kirchner, and D. L. Feng, Phys. Rev. B 97, 075149 (2018), arXiv: 1802.04529.

    Article  ADS  Google Scholar 

  15. Q. Y. Chen, D. F. Xu, X. H. Niu, R. Peng, H. C. Xu, C. H. P. Wen, X. Liu, L. Shu, S. Y. Tan, X. C. Lai, Y. J. Zhang, H. Lee, V. N. Strocov, F. Bisti, P. Dudin, J. X. Zhu, H. Q. Yuan, S. Kirchner, and D. L. Feng, Phys. Rev. Lett. 120, 066403 (2018), arXiv: 1801.07797.

    Article  ADS  Google Scholar 

  16. K. Haule, C. H. Yee, and K. Kim, Phys. Rev. B 81, 195107 (2010), arXiv: 0907.0195.

    Article  ADS  Google Scholar 

  17. H. Shishido, R. Settai, D. Aoki, S. Ikeda, H. Nakawaki, N. Nakamura, T. Iizuka, Y. Inada, K. Sugiyama, T. Takeuchi, K. Kindo, T. C. Kobayashi, Y. Haga, H. Harima, Y. Aoki, T. Namiki, H. Sato, and Y. Nuki, J. Phys. Soc. Jpn. 71, 162 (2002).

    Article  ADS  Google Scholar 

  18. G. Kresse, and J. Hafner, Phys. Rev. B 47, 558 (1993).

    Article  ADS  Google Scholar 

  19. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  20. R. T. Macaluso, J. L. Sarrao, P. G. Pagliuso, N. O. Moreno, R. G. Goodrich, D. A. Browne, F. R. Fronczek, and J. Y. Chan, J. Solid State Chem. 166, 245 (2002).

    Article  ADS  Google Scholar 

  21. E. A. Forzani, Characterization of the Electronic Properties of LaIrIn5: Calculations, Transport, Heat Capacity and de Haas-van Alphen Experiments, Dissertation for Doctoral Degree (University of G̈ottingen, (G̈ottingen, 2007), pp. 103–160.

    Google Scholar 

  22. Q. Y. Chen, X. B. Luo, D. H. Xie, M. L. Li, X. Y. Ji, R. Zhou, Y. B. Huang, W. Zhang, W. Feng, Y. Zhang, L. Huang, Q. Q. Hao, Q. Liu, X. G. Zhu, Y. Liu, P. Zhang, X. C. Lai, Q. Si, and S. Y. Tan, Phys. Rev. Lett. 123, 106402 (2019), arXiv: 1906.02417.

    Article  ADS  Google Scholar 

  23. Y. Zhang, F. Chen, C. He, B. Zhou, B. P. Xie, C. Fang, W. F. Tsai, X. H. Chen, H. Hayashi, J. Jiang, H. Iwasawa, K. Shimada, H. Namatame, M. Taniguchi, J. P. Hu, and D. L. Feng, Phys. Rev. B 83, 054510 (2011), arXiv: 0904.4022.

    Article  ADS  Google Scholar 

  24. H. C. Choi, B. I. Min, J. H. Shim, K. Haule, and G. Kotliar, Phys. Rev. Lett. 108, 016402 (2012), arXiv: 1105.2402.

    Article  ADS  Google Scholar 

  25. Q. Y. Chen, D. F. Xu, X. H. Niu, J. Jiang, R. Peng, H. C. Xu, C. H. P. Wen, Z. F. Ding, K. Huang, L. Shu, Y. J. Zhang, H. Lee, V. N. Strocov, M. Shi, F. Bisti, T. Schmitt, Y. B. Huang, P. Dudin, X. C. Lai, S. Kirchner, H. Q. Yuan, and D. L. Feng, Phys. Rev. B 96, 045107 (2017), arXiv: 1610.06724.

    Article  ADS  Google Scholar 

  26. D. Hall, L. Balicas, Z. Fisk, R. G. Goodrich, U. Alver, and J. L. Sarrao, Phys. Rev. B 79, 033106 (2009), arXiv: 0807.2590.

    Article  ADS  Google Scholar 

  27. M. Yano, A. Sekiyama, H. Fujiwara, T. Saita, S. Imada, T. Muro, Y. Onuki, and S. Suga, Phys. Rev. Lett. 98, 036405 (2007).

    Article  ADS  Google Scholar 

  28. S. Jang, J. D. Denlinger, J. W. Allen, V. S. Zapf, M. B. Maple, J. N. Kim, B. G. Jang, and J. H. Shim, arXiv: 1704.08247.

  29. T. Ito, P. A. Rayjada, N. Kamakura, Y. Takata, T. Yokoya, A. Chainani, S. Shin, M. Nohara, and H. Takagi, J. Phys.-Condens. Matter 15, S2149 (2003).

    Article  ADS  Google Scholar 

  30. S. Fujimori, A. Fujimori, K. Shimada, T. Narimura, K. Kobayashi, H. Namatame, M. Taniguchi, H. Harima, H. Shishido, S. Ikeda, D. Aoki, Y. Tokiwa, Y. Haga, and Y. Nuki, Phys. Rev. B 73, 224517 (2006), arXiv: cond-mat/0602296.

    Article  ADS  Google Scholar 

  31. Q. Y. Chen, X. B. Luo, E. Vescovo, K. Kaznatcheev, F. J. Walker, C. H. Ahn, Z. F. Ding, Z. H. Zhu, L. Shu, Y. B. Huang, and J. Jiang, Phys. Rev. B 100, 035117 (2019).

    Article  ADS  Google Scholar 

  32. Y. Yang, Z. Fisk, H. O. Lee, J. D. Thompson, and D. Pines, Nature 454, 611 (2008).

    Article  ADS  Google Scholar 

  33. Y. Yang, and D. Pines, Proc. Natl. Acad. Sci. 109, E3060 (2012), arXiv: 1206.1115.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun Zhang or QiuYun Chen.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11874330, 11774320, U1630248, and 11904334), the National Key Research and Development Program of China (Grant No. 2017YFA0303104), the National Key R&D Program of the MOST of China (Grant No. 2016YFA0300204), the special fund from Institute of Materials, CAEP (Grant No. TP02201904), the Equipment development fund (Grant No. JZX7Y201901SY00900107) and the Science Challenge Project (Grant No. TZ2016004). Part of this research used Beamline 03U of the Shanghai Synchron Radiation Facility, which is supported by ME2 project under contract No. 11227902 from National Natural Science Foundation of China. DaWei Shen was supported by “Award for Outstanding Member in Youth Innovation Promotion Association CAS”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, R., Luo, X., Ding, Z. et al. Electronic structure of LaIrIn5 and f-electron character in its related Ce-115 compounds. Sci. China Phys. Mech. Astron. 63, 117012 (2020). https://doi.org/10.1007/s11433-019-1564-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-019-1564-6

Keywords

Navigation