Skip to main content
Log in

Atomic simulations of influence of twinning on crack propagation of Al

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Molecular dynamics simulation was performed to investigate the influence of twin boundary (TB) spacing on crack propagation of Al. This study reveals the orientation of initial crack may affect the mechanism of crack growth obviously. TB strengthens Al when the crack orientation is parallel with TB because of the hinderance of TB to the emission of the dislocations. The results indicate that there is an optimal TB spacing for mechanical properties of the Al, exhibiting reverse HP (Hall-Petch) and HP effect when the TB spacing is near the critical TB spacing. Furthermore, we find that there is a yield strength hardening effect in nanotwinned Al when the crack orientation is perpendicular to the TB, and the Young’s modulus is smaller in the nanotwinned Al than that of twin free Al. The studies also demonstrate that this distinctive deformation behavior is related to nucleation of dislocations and the repulsive force of TB to the dislocations and crack propagation, as well as the distance between the crack tip and the TB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Griffith A A. The phenomena of rupture and flow in solids. Philos Trans R Soc London A, 1921, 221: 163–198

    Article  ADS  Google Scholar 

  2. Lin E Q, Niu L S, Shi H J, et al. Molecular dynamics study on the nano-void growth and coalescence at grain boundary. Sci China-Phys Mech Astron, 2012, 55: 86–93

    Article  ADS  Google Scholar 

  3. Fang D N, Liu B, Sun C T. Fatigue crack growth in ferroelectric ceramics driven by alternating electric fields. J Am Ceram Soc, 2004, 87: 840–846

    Article  Google Scholar 

  4. Liu B, Qiu X, Huang Y, et al. The size effect on void growth in ductile materials. J Mech Phys Solids, 2003, 51: 1171–1187

    Article  ADS  MATH  Google Scholar 

  5. Shao Y, Zhao H P, Feng X Q, et al. Discontinuous crack-bridging model for fracture toughness analysis of nacre. J Mech Phys Solids, 2012, 60: 1400–1419

    Article  MathSciNet  ADS  Google Scholar 

  6. Fu X L, Wang G F, Feng X Q. Surface effects on mode-I crack tip fields: A numerical study. Eng Fract Mech, 2010, 77: 1048–1057

    Article  Google Scholar 

  7. Yang Z Y, Lu Z X, Zhao Y P. Atomistic simulation on size-dependent yield strength and defects evolution of metal nanowires. Comput Mater Sci, 2009, 46: 142–150

    Article  Google Scholar 

  8. Wang B B, Wang F C, Zhao Y P. Understanding formation mechanism of ZnO diatomic chain and multi-shell structure using physical mechanics: Molecular dynamics and first-principle simulations. Sci China-Phys Mech Astron, 2012, 55: 1138–1146

    Article  ADS  Google Scholar 

  9. Tang Q H. Effect of size on mechanical behavior of Au pillars by molecular dynamics study. Sci China-Phys Mech Astron, 2012, 55: 1111–1117

    Article  ADS  Google Scholar 

  10. Liu X M, Yang X B, Wei Y G. Yielding behavior of copper nanowire in the presence of vacancies. Sci China-Phys Mech Astron, 2012, 55: 1010–1017

    Article  ADS  Google Scholar 

  11. Qu S, Zhang P, Wu S D, et al. Twin boundaries: Strong or weak? Scripta Mater, 2008, 59: 1131–1134

    Article  Google Scholar 

  12. Thompson N, Wadsworth N J, Louat N. The origin of fatigue fracture in copper. Philos Mag, 1956, 1: 113–126

    Article  ADS  Google Scholar 

  13. Forsyth P J E. Exudation of Material from Slip Bands at the Surface of Fatigue Crystals of an Aluminum Copper Alloy. Nature, 1953, 171: 172–173

    Article  ADS  Google Scholar 

  14. Zhang Z F, Wang Z G, Li S X. Fatigue cracking possibility along grain boundaries and persistent slip bands in copper bicrystals. Fatigue Fract Eng Mater Struct, 1998, 21: 1307–1316

    Article  Google Scholar 

  15. Zhang Z F, Wang Z G. Cyclic deformation features of a copper bicrystal with embedded grains and surrounding grain boundary. Mater Sci Eng A, 1999, 271: 449–457

    Article  Google Scholar 

  16. Zhang Z F, Wang Z G. Dependence of intergranular fatigue cracking on the interactions of persistent slip bands with grain boundaries. Acta Mater, 2003, 51: 347–364

    Article  Google Scholar 

  17. Lu L, Shen Y F, Chen X H, et al. Ultrahigh Strength and High Electrical Conductivity in Copper. Science, 2004, 304: 422–426

    Article  ADS  Google Scholar 

  18. Li X Y, Wei Y J, Lu L, et al. Dislocation nucleation governed softening and maximum strength in nano-twinned metals. Nature, 2010, 464: 877–880

    Article  ADS  Google Scholar 

  19. Lu L, Chen X, Huang X, et al. Revealing the Maximum Strength in Nanotwinned Copper. Science, 2009, 323: 607–610

    Article  ADS  Google Scholar 

  20. Cao A J, Wei Y G, Ma E. Grain boundary effects on plastic deformation and fracture mechanisms in Cu nanowires: Molecular dynamics simulations. Phys Rev B, 2008, 77: 195429

    Article  ADS  Google Scholar 

  21. Deng C, Sansoz F. Near-Ideal Strength in Gold Nanowires Achieved through Microstructural Design. ACS Nano, 2009, 3: 3001–3008

    Article  Google Scholar 

  22. Zheng Y G, Lu J, Zhang H W, et al. Strengthening and toughening by interface-mediated slip transfer reaction in nanotwinned copper. Scripta Mater, 2009, 60: 508–511

    Article  Google Scholar 

  23. Wei Y J. Scaling of maximum strength with grain size in nanotwinned fcc metals. Phys Rev B, 2011, 83: 132104

    Article  ADS  Google Scholar 

  24. Qu S X, Zhou H F. Atomistic mechanisms of microstructure evolution in nanotwinned polycrystals. Scripta Mater, 2011, 65: 265–268

    Article  Google Scholar 

  25. Zhou H F, Qu S X. The effect of nanoscale twin boundaries on fracture toughness in nanocrystalline Ni. Nanotechnology, 2010, 21: 035706

    Article  ADS  Google Scholar 

  26. Song H Y, Li Y L. Effect of twin boundary spacing on deformation behavior of nanotwinned magnesium. Phys Lett A, 2012, 376: 529–533

    Article  ADS  Google Scholar 

  27. Song H Y, Li Y L. Atomic simulations of effect of grain size on deformation behavior of nano-polycrystal magnesium. J Appl Phys, 2012, 111: 044322–5

    Article  ADS  Google Scholar 

  28. Song H Y, Li Y L. Effect of stacking fault and temperature on deformation behaviors of nanocrystalline Mg. J Appl Phys, 2012, 112: 054322–4

    Article  MathSciNet  ADS  Google Scholar 

  29. An M R, Song H Y, Su J F. Effects of twin and stacking fault on deformation behaviours of Al nanowires under tension loading. Chin Phys B, 2012, 21: 106202

    Article  ADS  Google Scholar 

  30. Cleri F, Rosato V. Tight-binding potentials for transition metals and alloys. Phys Rev B, 1993, 48: 22–23

    Article  ADS  Google Scholar 

  31. Faken D, Jonsson H. Systematic analysis of local atomic structure combined with 3D computer graphics. Comput Mater Sci, 1994, 2: 279–286

    Article  Google Scholar 

  32. Stukowski A. Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool. Modelling Simul Mater Sci Eng, 2010, 18: 015012

    Article  ADS  Google Scholar 

  33. Zhang L F, Zhou H F, Qu S X. Blocking effect of twin boundaries on partial dislocation emission from void surfaces. Nanoscale Res Lett, 2012, 7: 164

    Article  ADS  Google Scholar 

  34. Guo X, Xia Y Z. Repulsive force vs. source number: Competing mechanisms in the yield of twinned gold nanowires of finite length. Acta Mater, 2011, 59: 2350–2357

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to MinRong An or HaiYang Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

An, M., Song, H. Atomic simulations of influence of twinning on crack propagation of Al. Sci. China Phys. Mech. Astron. 56, 1938–1944 (2013). https://doi.org/10.1007/s11433-013-5228-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-013-5228-9

Keywords

Navigation