Skip to main content
Log in

Multi-quasiparticle rotational bands in neutron-rich erbium isotopes

  • Article
  • Progress of Projects Supported by NSFC
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Multi-quasiparticle states and rotational bands in neutron-rich erbium isotopes have been investigated by the configurationconstrained pairing-deformation-frequency self-consistent total-Routhian-surface (TRS) method with particle-number-conserved pairing. Specifically, the recently observed K fy = 4 bands in 168,170,172Er have been found to experience a configuration change in our calculation. Some other multi-quasiparticle states with uncertain configuration assignments have been reinvestigated by calculating their collective rotations. The configuration-constrained TRS calculation can reproduce experimental data consistently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang Y H, Xu F R, He J J, et al. High-spin states and signature inversion in odd-odd 182Au. Sci China Ser G-Phys Mech Astron, 2003, 46: 382–389

    Article  MathSciNet  ADS  Google Scholar 

  2. Fang Y D, Zhang Y H, Oshima M, et al. Properties of the πh 9/2 ⊗νi 13/2 band in odd-odd 188Au. Sci China-Phys Mech Astron, 2011, 54(Suppl. 1): s98–s102

    ADS  Google Scholar 

  3. Liu X D, Shi Y, Xu F R. Shape change induced by g 9/2 rotational alignment in 84,86Mo. Sci China-Phys Mech Astron, 2011, 54(10): 1811–1814

    Article  ADS  Google Scholar 

  4. Frauendorf S. Spontaneous symmetry breaking in rotating nuclei. Rev Mod Phys, 2001, 73: 463–514

    Article  ADS  Google Scholar 

  5. Wadsworth R, Nolan P J. The influence of microscopic structures on rotational motion in nuclei. Rep Prog Phys, 2002, 65: 1079–1118

    Article  ADS  Google Scholar 

  6. Jiao C F, Shi Y, Xu F R, et al. Competition between collective oblate rotation and non-collective prolate K isomerism in neutron-rich tungsten isotopes. Sci China-Phys Mech Astron, 2012, 55: 1613–1617

    Article  ADS  Google Scholar 

  7. Zhang Y H, Oshima M, Toh Y, et al. Rotational bands and signature inversion in odd-odd 172Re. Phys Rev C, 2003, 68: 054313

    Article  ADS  Google Scholar 

  8. Song C Y, Li Z P, Vretenar D, et al. Microscopic analysis of spherical to γ-soft shape transitions in Zn isotopes. Sci China-Phys Mech Astron, 2011, 54(2): 222–226

    Article  ADS  Google Scholar 

  9. Zhu S J, Wang J G, Gu L, et al. New multi-phonon gamma vibrational bands in A — 110 neutron-rich nuclei. Sci China-Phys Mech Astron, 2011, 54(Suppl. 1): s44–s48

    MathSciNet  ADS  Google Scholar 

  10. Zhang L H, Jiang H, Zhao Y M. Studies of low-lying states of eveneven Xe isotopes within the nucleon pair approximation. Sci China-Phys Mech Astron, 2011, 54(Suppl. 1): s103–s108

    MathSciNet  ADS  Google Scholar 

  11. Chen L, Zhou X H, Zhang Y H, et al. Properties of the 3/2[521] band in the odd-N rare-earth nuclei. Sci China-Phys Mech Astron, 2011, 54(Suppl. 1): s37–s43

    ADS  Google Scholar 

  12. Walker P M, Dracoulis G D. Energy traps in atomic nuclei. Nature, 1999, 399: 35–40

    Article  ADS  Google Scholar 

  13. Walker PM, Dracoulis G D. Exotic isomers in deformed atomic nuclei. Hyperfine Interact, 2001, 135: 83–107

    Article  ADS  Google Scholar 

  14. Dracoulis G D, Kondev F G, Walker P M. Pairing reduction and rotational motion in multi-quasiparticle states. Phys Lett B, 1998, 419: 7–13

    Article  ADS  Google Scholar 

  15. Xu F R, Walker P M, Sheikh J A, et al. Multi-quasiparticle potentialenergy surfaces. Phys Lett B, 1998, 435: 257–263

    Article  ADS  Google Scholar 

  16. Xu F R, Walker P M, Wyss R. Limit to high-spin isomerism in hafnium isotopes. Phys Rev C, 2000, 62: 014301

    Article  ADS  Google Scholar 

  17. Jain K, Burglin O, Dracoulis G D, et al. Multi-quasiparticle states in the mass-180 region. Nucl Phys A, 1995, 591: 61–84

    Article  ADS  Google Scholar 

  18. Li G, Zhou X H, Zhang S Q, et al. Investigation into the rotational bands of 185Pt with the particle-rotor model. Sci China-Phys Mech Astron, 2011, 54(Suppl. 1): s114–s118

    ADS  Google Scholar 

  19. Yang Y C, Sun Y. Structure analysis of 159Sm and properties of oddmass neutron-rich nuclei in mass-160 region. Sci China-Phys Mech Astron, 2011, 54(Suppl. 1): s81–s87

    ADS  Google Scholar 

  20. Wu C Y, Cline D, Simon M W, et al. Complex band interactions in 170Er. Phys Rev C, 2000, 61: R021305

    Article  ADS  Google Scholar 

  21. Wu C Y, Cline D, Simon M W, et al. K fy = 4 isomers and their rotational bands in 168,170Er. Phys Rev C, 2003, 68: 044305

    Article  ADS  Google Scholar 

  22. Wu C Y, Cline D, Simon M W, et al. Rotational bands in neutron-rich 169,171,172Er. Phys Rev C, 2004, 70: 014313

    Article  ADS  Google Scholar 

  23. Dracoulis G D, Lane G L, Kondev F G, et al. Two-quasiparticle structures and isomers in 168Er, 170Er, and 172Er. Phys Rev C, 2010, 81: 054313

    Article  ADS  Google Scholar 

  24. Dracoulis G D, Lane G L, Kondev F G, et al. Two-quasiparticle K-isomers and pairing strengths in the neutron-rich isotopes 174Er and 172Er. Phys Lett B, 2006, 635: 200–206

    Article  ADS  Google Scholar 

  25. Dracoulis G D, Lane G L, Kondev F G, et al. Lifetime of the K fy = 8 isomer in the neutron-rich nucleus 174Er, and N = 106 E1 systematics. Phys Rev C, 2009, 79: R061303

    Article  ADS  Google Scholar 

  26. Sun Y, Hara K, Sheikh J A, et al. Multiphonon γ-vibrational bands and the triaxial projected shell model. Phys Rev C, 2000, 61: 064323

    Article  ADS  Google Scholar 

  27. Sheikh J A, Bhat G H, Sun Y, et al. Triaxial projected shell model study of γ-vibrational bands in even-even Er isotopes. Phys Rev C, 2008, 77: 034313

    Article  ADS  Google Scholar 

  28. Sheikh J A, Bhat G H, Liu Y X, et al. Mixing of quasiparticle excitations and γ-vibrations in transitional nucle. Phys Rev C, 2011, 84: 054314

    Article  ADS  Google Scholar 

  29. Jiao C F, Dong G X, Xu F R. Mixing of two-quasineutron and twoquasiproton K fy = 6+ configurations in the vicinity of 174Yb. Chin Phys C, 2013, 37: 034102

    Article  ADS  Google Scholar 

  30. Chen F Q, Sun Y, Walker P M, et al. Mixing effects on K-forbidden transition rates from the 6+ isomers in the N = 104 isotones. J Phys G, 2013, 40: 015101

    Article  ADS  Google Scholar 

  31. Zhang Z H, Lei Y A, Zeng J Y. Particle-number conserving analysis for the systematics of high-K pair-broken bands in Hf and Lu isotopes (170 ⩽A ⩽178). Phys Rev C, 2009, 80: 034313

    Article  ADS  Google Scholar 

  32. Dong G X, Yu S Y, Liu Y X, et al. The study of energy bands in nucleus 102Zr. Sci China-Phys Mech Astron, 2010, 53(1): 106–110

    Article  ADS  Google Scholar 

  33. Fu X M, Xu F R, Pei J C, et al. Configuration-constrained total Routhian surfaces with particle-number-conserving pairing. Phys Rev C, 2013, 87: 044319

    Article  ADS  Google Scholar 

  34. Wang H L, Liu H L, Xu F R, et al. Investigation of octupole effects in superheavy nuclei with improved potential-energy-surface calculations. Chin Sci Bull, 2012, 57: 1761–1764

    Article  Google Scholar 

  35. Nazarewicz W, Dudek J, Bengtsson R, et al. Microscopic study of the high-spin behaviour in selected A ≃ 80 nuclei. Nucl Phys A, 1985, 435: 397–447

    Article  ADS  Google Scholar 

  36. Wyss R, Nyberg J, Johnson A, et al. Highly deformed intruder bands in the A ≈ 130 mass region. Phys Lett B, 1988, 215: 211–217

    Article  ADS  Google Scholar 

  37. Nazarewicz W, Wyss R, Johnsson A. Strcture of superdeformed bands in the A ≈ 150 mass region. Nucl Phys A, 1989, 503: 285–330

    Article  ADS  Google Scholar 

  38. Satula W, Wyss R, Magierski P. The Lipkin-Nogami formalism for the cranked mean field. Nucl Phys A, 1994, 578: 45–61

    Article  ADS  Google Scholar 

  39. Xu F R, Satula W, Wyss R. Quadrupole pairing interaction and signature inversion. Nucl Phys A, 2000, 669: 119–134

    Article  ADS  Google Scholar 

  40. Zeng J Y, Jin T H, Zhao Z J. Reduction of nuclear moment of inertia due to pairing interaction. Phys Rev C, 1994, 50: 1388–1397

    Article  ADS  Google Scholar 

  41. Zhang Z H, Zeng Z Y, Zhao E G, et al. Particle-number conserving analysis of rotational bands in 247,249Cm and 249Cf. Phys Rev C, 2011, 83: 011304 (R)

    ADS  Google Scholar 

  42. Zhang Z H, He X T, Zeng Z Y, et al. Systematic investigation of the rotational bands in nuclei with Z ≈ 100 using a particle-number conserving method based on a cranked shell model. Phys Rev C, 2012, 85: 014324

    Article  ADS  Google Scholar 

  43. Zhang Z H, Meng J, Zhao E G, et al. Rotational properties of the superheavy nucleus 256Rf and its neighboring even-even nuclei in a particle-number-conserving cranked shell model. Phys Rev C, 2013, 87: 054308

    Article  ADS  Google Scholar 

  44. Zhang Z H, Zhao P W, Meng J, et al. Nuclear superfluidity for antimagnetic rotation in 105Cd and 106Cd. Phys Rev C, 2013, 87: 054314

    Article  ADS  Google Scholar 

  45. Madland D G, Nix J R. New model of the average neutron and proton pairing gaps. Nucl Phys A, 1988, 476: 1–38

    Article  ADS  Google Scholar 

  46. Xu F R, Wyss R, Walker P M. Mean-field and blocking effects on oddeven mass differences and rotational motion of nuclei. Phys Rev C, 1999, 60: R051301

    Article  ADS  Google Scholar 

  47. Myers W D, Swiatecki W J. Nuclear masses and deformations. Nucl Phys, 1966, 81: 1–60

    Google Scholar 

  48. Strutinsky V M, Shell effects in nuclear masses and deformation energies. Nucl Phys A, 1967, 95: 420–442

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to FuRong Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, X., Jiao, C., Xu, F. et al. Multi-quasiparticle rotational bands in neutron-rich erbium isotopes. Sci. China Phys. Mech. Astron. 56, 1423–1427 (2013). https://doi.org/10.1007/s11433-013-5165-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-013-5165-7

Keywords

Navigation