Skip to main content
Log in

Competition between collective oblate rotation and non-collective prolate K isomerism in neutron-rich tungsten isotopes

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Recent experiments open up the possibility to investigate oblate rotation-aligned states and prolate high-K isomers in neutron-rich tungsten isotopes. In the present work, we perform the projected-shell-model calculations for A ∼ 190 tungsten nuclei. The 190W results are compared with experimental data. The observed 8+ isomer is assigned as a two-quasiproton K π = 8+ configuration. Low-lying high-K four-quasiparticle states are predicted. Of particular interest is the prediction of the K π = 20+ state in 190,192W, which may form a long-lived spin trap. In competition with the prolate high-K states, rotational alignment leads to near-yrast collective oblate rotation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wadsworth R, Nolan P J. The influence of microscopic structures on rotational motion in nuclei. Rep Prog Phys, 2002, 65: 1079–1118

    Article  ADS  Google Scholar 

  2. Song C Y, Li Z P, Vretenar D, et al. Microscopic analysis of spherical to γ-soft shape transitions in Zn isotopes. Sci China-Phys Mech Astron, 2011, 54(2): 222–226

    Article  ADS  Google Scholar 

  3. Zhu S J, Wang J G, Gu L, et al. New multi-phonon gamma vibrational bands in A ∼ 110 neutron-rich nuclei. Sci China-Phys Mech Astron, 2011, 54(s1): 44–48

    Article  MathSciNet  ADS  Google Scholar 

  4. Zhang L H, Jiang H, Zhao Y M. Studies of low-lying states of eveneven Xe isotopes within the nucleon pair approximation. Sci China-Phys Mech Astron, 2011, 54(s1): 103–108

    Article  MathSciNet  ADS  Google Scholar 

  5. Chen L, Zhou X H, Zhang Y H, et al. Properties of the 3/2[521] band in the odd-N rare-earth nuclei. Sci China-Phys Mech Astron, 2011, 54(s1): 37–43

    Article  ADS  Google Scholar 

  6. Walker P M, Dracoulis G D. Exotic isomers in deformed atomic nuclei. Hyperfine Interact, 2001, 135: 83–107

    Article  ADS  Google Scholar 

  7. Li Z P, Zhang Y, Vretenar D, et al. Single-particle resonances in a deformed relativistic potential. Sci China-Phys Mech Astron, 2010, 53(4): 773–778

    Article  ADS  MATH  Google Scholar 

  8. Xu F R, Walker P M, Wyss R. Limit to high-spin isomerism in hafnium isotopes. Phys Rev C, 2000, 62: 014301

    Article  ADS  Google Scholar 

  9. Hilton R R, Mang H J. Band-crossing prediction in 180Hf. Phys Rev Lett, 1979, 43: 1979–1981

    Article  ADS  Google Scholar 

  10. Walker P M, Xu F R. Prediction and possible observation of an oblate shape isomer in 190W. Phys Lett B, 2006, 635: 286–289

    Article  ADS  Google Scholar 

  11. Sun Y, Walker P M, Xu F R, et al. Rotation-driven prolate-to-oblate shape phase transition in 190W: A projected shell model study. Phys Lett B, 2008, 659: 165–169

    Article  ADS  Google Scholar 

  12. Fang Y D, Zhang Y H, Oshima M, et al. Properties of the πh 9/2νi 13/2 band in odd-odd 188Au. Sci China-Phys Mech Astron, 2011, 54(s1): 98–102

    Article  ADS  Google Scholar 

  13. Liu X D, Shi Y, Xu F R. Shape change induced by g 9/2 rotational alignment in 84,86Mo. Sci China-Phys Mech Astron, 2011, 54(10): 1811–1814

    Article  ADS  Google Scholar 

  14. Li G, Zhou X H, Zhang S Q, et al. Investigation into the rotational bands of 185Pt with the particle-rotor model. Sci China-Phys Mech Astron, 2011, 54(s1): 114–118

    Article  ADS  Google Scholar 

  15. Reed M W, Cullen I J, Walker P M, et al. Discovery of highly excited long-lived isomers in neutron-rich hafnium and tantalum isotopes through direct mass measurements. Phys Rev Lett, 2010, 105: 172501

    Article  ADS  Google Scholar 

  16. Podolyák Z, Regan P H, Pfützner M, et al. Isomer spectroscopy of neutron rich 190W116. Phys Lett B, 2000, 491: 225–231

    Article  ADS  Google Scholar 

  17. Caamaño M, Walker P M, Regan P H, et al. Isomers in neutron-rich A ≈190 nuclides from 208Pb fragmentation. Euro Phys J A, 2005, 23: 201–215

    Article  ADS  Google Scholar 

  18. Steer S J, Podolyák Z, Pietri S, et al. Isomeric states observed in heavy neutron-rich nuclei populated in the fragmentation of a 208Pb beam. Phys Rev C, 2011, 84: 044313

    Article  ADS  Google Scholar 

  19. Lane G J, Dracoulis G D, Kondev F G, et al. Structure of neutron-rich tungsten nuclei and evidence for a 10 isomer in 190W. Phys Rev C, 2010, 82: 051304 (R)

    Article  ADS  Google Scholar 

  20. Hara K, Sun Y. Projected shell model and high-spin spectroscopy. Int J Mod Phys E, 1995, 4: 637–785

    Article  ADS  Google Scholar 

  21. Hara K, Sun Y, Mizusaki T. Backbending mechanism of 48Cr. Phys Rev Lett, 1999, 83: 1922–1925

    Article  ADS  Google Scholar 

  22. Sun Y, Egido J L. Excited bands of 168Yb in an angular momentum projected theory. Phys Rev C, 1994, 50: 1893–1900

    Article  ADS  Google Scholar 

  23. Dong G X, Yu S Y, Liu Y X, et al. The study of energy bands in nucleus 102Zr. Sci China-Phys Mech Astron, 2010, 53(1): 106–110

    Article  ADS  Google Scholar 

  24. Kang X Z, Shen S F, Han G B, et al. High spin states in stable nucleus 84Sr. Sci China-Phys Mech Astron, 2010, 53(10): 1861–1867

    Article  ADS  Google Scholar 

  25. Sun Y, Zhou X R, Long G L, et al. Nuclear structure of 178Hf related to the spin-16, 31-year isomer. Phys Lett B, 2004, 589: 83–88

    Article  ADS  Google Scholar 

  26. Nilsson S G, Tsang C F, Sobiczewski A, et al. On the nuclear structure and stability of heavy and superheavy elements. Nucl Phys A, 1969, 131: 1–66

    Article  ADS  Google Scholar 

  27. Zhang J Y, Xu N, Fossan D B, et al. Nilsson parameter set in the A ≈ 120–140 region. Phys Rev C, 1989, 39: 714–716

    Article  ADS  Google Scholar 

  28. Pradhan H C, Nogami Y, Law J. Study of approximations in the nuclear pairing-force problem. Nucl Phys A, 1973, 201: 357–368

    Article  ADS  Google Scholar 

  29. Ring P, Schuck P. The Nuclear Many Body Problem. New York: Springer, 1980

    Book  Google Scholar 

  30. Möller P, Nix J R. Nuclear pairing models. Nucl Phys A, 1992, 536: 20–60

    Article  ADS  Google Scholar 

  31. Yang Y C, Sun Y. Structure analysis of 159Sm and properties of odd-mass neutron-rich nuclei in mass-160 region. Sci China-Phys Mech Astron, 2011, 54(s1): 81–87

    Article  ADS  Google Scholar 

  32. Arima A. A short history of nuclear magnetic moments and GT transitions. Sci China-Phys Mech Astron, 2011, 54(2): 188–193

    Article  ADS  Google Scholar 

  33. Bentz W, Arima A. The orbital g-factor and related sum rules. Sci China-Phys Mech Astron, 2011, 54(2): 194–197

    Article  ADS  Google Scholar 

  34. Yao J M, Peng J, Meng J, et al. g factors of nuclear low-lying states: A covariant description. Sci China-Phys Mech Astron, 2011, 54(2): 198–203

    Article  ADS  Google Scholar 

  35. Castel B, Towner I S. Modern Theories of Nuclear Moments. Oxford: Clarendon, 1990

    Google Scholar 

  36. Strutinsky V M. Shell effects in nuclear masses and deformation energies. Nucl Phys A, 1967, 95: 420–442

    Article  ADS  Google Scholar 

  37. Myers W D, Swiatecki W J. Nuclear masses and deformations. Nucl Phys, 1966, 81: 1–60

    Google Scholar 

  38. Stevenson P D, Brine M P, Podolyák Z, et al. Shape evolution in the neutron-rich tungsten region. Phys Rev C, 2005, 72: 047303

    Article  ADS  Google Scholar 

  39. Sarriguren P, Rodríguez-Guzmán R, Robledo L M. Shape transitions in neutron-rich Yb, Hf, W, Os, and Pt isotopes within a Skyrme Hartree-Fock+BCS approach. Phys Rev C, 2008, 77: 064322

    Article  ADS  Google Scholar 

  40. Nomura K, Otsuka T, Rodríguez-Guzmán R, et al. Spectroscopic calculations of the low-lying structure in exotic Os and W isotopes. Phys Rev C, 2011, 83: 054303

    Article  ADS  Google Scholar 

  41. Zhang Y, Hou Z F, Liu Y X. Shape phase transitions in nuclei: Effective order parameters and trajectories. Sci China-Phys Mech Astron, 2011, 54(s1): 88–97

    Article  MathSciNet  ADS  Google Scholar 

  42. Farrelly G F, Podolyák Z, Steer S J, et al. Revision of the K-isomer in 190W116. Acta Phys Pol B, 2009, 40: 885–888

    ADS  Google Scholar 

  43. Dracoulis G D, Lane G J, Byrne A P, et al. Long-lived three-quasiparticle isomers in 191Ir and 193Ir with triaxial deformation. Phys Lett B, 2012, 709: 59–64

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to FuRong Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiao, C., Shi, Y., Xu, F. et al. Competition between collective oblate rotation and non-collective prolate K isomerism in neutron-rich tungsten isotopes. Sci. China Phys. Mech. Astron. 55, 1613–1617 (2012). https://doi.org/10.1007/s11433-012-4824-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-012-4824-4

Keywords

Navigation