Skip to main content

Advertisement

Log in

Quasiparticle structure of low-lying yrast energy levels and \(\gamma \)-bands in \(^{164{-}174}\)Hf nuclei

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

In the present work, we have employed the theoretical framework of Triaxial Projected Shell Model (TPSM) to investigate the presence of triaxiality in transitional nuclei of \(^{164{-}174}\)Hf. We have obtained the calculated yrast and \(\gamma \)-bands and compared with the corresponding experimental data. In addition to these, \(\gamma \gamma \)-bands are also predicted. In order to thoroughly understand the structure of yrast and \(\gamma \)-bands, we have kept our focus to study low energy states. The yrast energy ratios, staggering in \(\gamma \)-bands, the phenomenon of back-bending, the reduced electromagnetic transition probabilities and g-factors are calculated using TPSM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study with Triaxial Projected Shell Model calculations, and there are no experimental data associated. All model calculations have been explained with references and our procedures are described also in details.]

References

  1. A. Bohr, B.R. Mottelson, Nuclear Structure, vol. II (Benjamin, New York, 1975)

    MATH  Google Scholar 

  2. M. Karday, H.M. Mittal, R. Mehra, Pramana-J. Phys. 91, 70 (2018)

    Article  ADS  Google Scholar 

  3. K. Nomura et al., Phys. Rev. Lett. 108, 132501 (2012)

    Article  ADS  Google Scholar 

  4. C. Q-Zhen et al., Chin. Phys. C 39(2), 024101 (2015)

    Article  ADS  Google Scholar 

  5. G.H. Bhat, W.A. Dhar, J.A. Sheikh, Y. Sun, Phys. Rev. C 89, 024101 (2014)

    Article  Google Scholar 

  6. R. Bengtsson, H. Frisk, F.R. May, J.A. Pinston, Nucl. Phys. A 415, 189 (1984)

    Article  ADS  Google Scholar 

  7. S. Frauendorf, Rev. Mod. Phys. 73, 463 (2001)

    Article  ADS  Google Scholar 

  8. J. Meng, J. Peng, S.Q. Zhang, S.G. Zhou, Phys. Rev. C 73, 037303 (2006)

    Article  ADS  Google Scholar 

  9. B. Crowell et al., Phys. Rev. C 53, 3 (1996)

    Article  Google Scholar 

  10. J.A. Sheikh, G.H. Bhat, Y.X. Liu, F.Q. Chen, Y. Sun, Phys. Rev. C 84, 054314 (2011)

    Article  ADS  Google Scholar 

  11. C.B. Li et al., Phys. Rev. C 94, 044307 (2016)

    Article  ADS  Google Scholar 

  12. H. Ejiri, B. Hagemann, Nucl. Phys. A 161, 449 (1971)

  13. J.I. Zaitzand, R.K. Sheline, Phys. Rev. C 6, 506–517 (1972)

    Article  ADS  Google Scholar 

  14. D.L. Bushnell, D.J. Buss, R.K. Smitter, Phys. Rev. C 10, 2483 (1974)

    Article  ADS  Google Scholar 

  15. I.A. Kondurov, E.M. Korotkikh, Y.V. Petrovand, G.I. Shuljak, Phys. Lett. B 106, 383–385 (1981)

    Article  ADS  Google Scholar 

  16. A.M. Hague et al., Nucl. Phys. A 455, 231–293 (1986)

    Article  ADS  Google Scholar 

  17. S. Raman et al., Atom. Data Nucl. Data Tables 36, 1–96 (1987)

    Article  ADS  Google Scholar 

  18. K. Raymond et al., Phys. Rev. C 48, 911–913 (1993)

    Article  Google Scholar 

  19. T. Morikawa et al., Phys. Lett. B 350, 169–172 (1995)

    Article  ADS  Google Scholar 

  20. L.I. Abou-Salem, El. Abd, K.E. Mageed, Acta Phys. Pol. B 36, 2105–2114 (2005)

    ADS  Google Scholar 

  21. H. Ejiri, B. Hagemann, Nucl. Phys. A 161, 449 (1971)

  22. I. Hossain, F.I. Sharrad, H.N. Kasim, A.A. Mohammed Ali, A.S. Ahmed, Int. J. Adv. Appl. Sci. 9(2), 142 (2020)

  23. A.M. Khalaf, A.M. Ismail, A.A. Zaki, Nucl. Phys. A 996, 121704 (2020)

    Article  Google Scholar 

  24. B.A. Bian, Y.M. Di, G.L. Long, Y. Sun, J.Y. Zhang, J.A. Sheikh, Phys. Rev. C 75, 014312 (2007)

  25. A. Wolf et al., Phys. Rev. C 76, 047308 (2007)

    Article  ADS  Google Scholar 

  26. M. Sakai, Atomic Data and Nuclear Data Tables, vol. 31, 399 (1984)

  27. R. Bakshi, S. Gupta, S. Singh, A. Bharti, G.H. Bhat, J.A. Sheikh, J. Phys. G 47, 075103 (2020)

    Article  ADS  Google Scholar 

  28. R. Bakshi, S. Gupta, S. Singh, A. Kumar, A. Bharti, G.H. Bhat, J.A. Sheikh, Eur. Phys. J. Plus 136, 25 (2021)

    Article  Google Scholar 

  29. S. Gupta, R. Bakshi, S. Singh, A. Bharti, G.H. Bhat, J.A. Sheikh, Chin. Phys. C 44(7), 074108 (2020)

    Article  ADS  Google Scholar 

  30. J.A. Sheikh, G.H. Bhat, Y. Sun, G.B. Vakil, R. Palit, Phys. Rev. C 77, 034313 (2008)

    Article  ADS  Google Scholar 

  31. S.G. Nilsson, C.F. Tsang, A. Sobiczewski, Z. Szymansiki, S. Wycech, C. Gusta fson, I. Lamm, P. Moller, B. Nilsson, Nucl. Phys. A 31, 1 (1969)

    Article  ADS  Google Scholar 

  32. K. Hara, Y. Sun, Int. J. Mod. Phys. E 4, 637 (1995)

    Article  ADS  Google Scholar 

  33. Y. Sun, K. Hara, J.A. Sheikh, J.G. Hirsch, V. Velazquez, M. Guidry, Phys. Rev. C 61, 064323 (2000)

    Article  ADS  Google Scholar 

  34. Y. Sun, J.L. Egido, Nucl. Phys. A 580, 1 (1994)

    Article  ADS  Google Scholar 

  35. J.A. Sheikh, G.H. Bhat, W.A. Dar, P.A. Ganai, Phys. Scr. 91, 063015 (2016)

    Article  ADS  Google Scholar 

  36. J.Y. Zhang et al., J. Phys. G 13, L75 (1987)

    Article  Google Scholar 

  37. R.F. Casten, Nuclear Structure from a Simple Perspective (Oxford University Press, Oxford, 1990)

    Google Scholar 

  38. N.V. Zamfir, R.F. Casten, Phys. Lett. B 260(3), 4 (1991)

    Google Scholar 

  39. E.A. McCutchan, D. Bonatoss, N.V. Zamfir, R.F. Casten, Phys. Rev. 76, 024306 (2007)

    Article  ADS  Google Scholar 

  40. A.S. Davydov, G.F. Filippov, Nucl. Phys. 8, 237 (1958)

    Article  Google Scholar 

  41. L.A. Najim, M.H. Kheder, Int. J. Mod. Phys. E 2(7), 1350055 (2013)

    Article  Google Scholar 

  42. ENSDF, Nucl. Data Sheets (2020), www.nndc.bnl.gov/ensdf

  43. M. Rudiegier et al., Phys. Rev. C 91, 044301 (2015)

    Article  ADS  Google Scholar 

  44. A.A. Mohammed, J. Kerbala Univ. 7, No. 4 scientific., 98 (2009)

  45. L. Weissman, M. Hass, C. Broude, Phys. Rev. C 57, 2 (1998)

    Article  Google Scholar 

  46. A. Wolf et al., Phys. Rev. C 85, 037304 (2012)

    Article  ADS  Google Scholar 

  47. Z. Berant et al., Phys. Rev. C 80, 057303 (2009)

    Article  ADS  Google Scholar 

  48. B. Singh, J. Chen, Nucl. Data Sheets 147, 1 (2018)

  49. C.M. Baglin, Nucl. Data Sheets 109, 110 (2008)

    Google Scholar 

  50. C.M. Baglin, Nucl. Data Sheets 111, 1807 (2010)

    Article  ADS  Google Scholar 

  51. C. M. Baglin, E. A. Mccutchan, S. Basunia, E. Browne, Nucl. Data Sheets 153, 1 (2018)

  52. B. Singh, Nucl. Data Sheets 75, 199 (1995)

  53. E. Browne, H. Junde, Nucl. Data Sheets 87, 15 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

VR would like to acknowledge financial support from the CUJ-UGC fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suram Singh.

Additional information

Communicated by Kamila Sieja.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, V., Singh, S., Rajput, M. et al. Quasiparticle structure of low-lying yrast energy levels and \(\gamma \)-bands in \(^{164{-}174}\)Hf nuclei. Eur. Phys. J. A 57, 274 (2021). https://doi.org/10.1140/epja/s10050-021-00583-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00583-9

Navigation