Skip to main content
Log in

Orbit control strategy for Lagrange point orbits based on an analytical method

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

The periodic or quasi-periodic orbits around collinear Lagrange points present many properties that are advantageous for space missions. These Lagrange point orbits are exponentially unstable. On the basis of an analytical method, an orbit control strategy that is designed to eliminate the dominant unstable components of Lagrange point orbits is developed. The proposed strategy enables the derivation of the analytical expression of nonlinear control force. The control parameter of this strategy can be arbitrarily selected provided that the parameter is considerably lower than the negative eigenvalue of motion equations, and that the energy required keeps the same order of magnitude. The periodic or quasi-periodic orbit of controlled equations remains near the periodic or quasi-periodic orbit of uncontrolled equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dunham D W, Farquhar R W. Libration point missions, 1978–2002. In: Proceedings of the Conference of Libration Point Orbits and Applications. Singapore: Word Scientific, 2003. 45–67

    Chapter  Google Scholar 

  2. David F, Karen R. Libration orbit mission design at L2: A MAP and NGST perspective. In: Proceedings of AAS/AIAA Astrodynamics Specialist Conference. Monterey, California: AIAA, 1998. AIAA 98-4469

    Google Scholar 

  3. Juillet J J, Collaudin B, Rideau P. The herschel/planck program—technical challenges for two science missions—the spacecraft. In: Proceedings of the 57th International Astronautical Congress. Valenica, Spain: Curran Associates, Inc., 2006. IAC-06-A3.1.2.

    Google Scholar 

  4. Farquhar R W. The Control and Use of Libration Point Satellites. Technical Report TR R346, NASA.1970

  5. Breakwell J V, Kamel A A, Ratner M J. Station-keeping for a translunar communications station. Celest Mech, 1974, 10(3): 357–373

    Article  ADS  MathSciNet  Google Scholar 

  6. Farquhar R W, Muhonen D P, Newman C R, et al. Trajectories and orbital maneuvers for the first libration-point satellite. J Guid Control, 1980, 3(6): 549–554

    Article  Google Scholar 

  7. Howell K C, Pernicka H J. Numerical determination of Lissajous trajectories in the restricted three-body problem. Celest Mech, 1988, 41: 107–124

    ADS  Google Scholar 

  8. Howell K C, Pernicka H J. Stationkeeping method for libration point trajectories. J Guid Control, 1993, 16(1): 151–159

    Article  Google Scholar 

  9. Howell K C, Gordon S C. Orbit determination error analysis and a stationkeeping strategy for sun-earth L 1 libration point orbits. J Astronaut Sci, 1994, 42(2): 207–228

    Google Scholar 

  10. Keeter T M. Station-keeping strategies for libration point orbits: Target point and floquet mode approaches. Dissertation for the Master’s Degree. West Lafayette, Indiana: Purdue University, 1994

    Google Scholar 

  11. Gomez G, Howell K, Masdemont J, et al. Station keeping strategies for translunar libration point orbits. In: Proceedings of AAS/AIAA Astrodynamics Specialist Conference. Monterey, California: AIAA, 1998. AAS 98-168

    Google Scholar 

  12. Simo C, Gomez G, Llibre J, et al. Station keeping of a quasiperiodic halo orbit using invariant manifolds. In: Proceedings of the Second International Symposium on Spacecraft Flight Dynamics. Darmstadt: European Space Agency, 1986. 65–70

    Google Scholar 

  13. Simo C, Gomez G, Llibre J, et al. On the optimal station keeping control of halo orbits. Acta Astronaut, 1987, 15(6): 391–397

    Article  Google Scholar 

  14. Hou X Y, Wang H H, Liu L. On station-keeping and control of the World Space Observatory of Ultraviolet. Chin J Astron Astrophys, 2006, 6(3): 372–378

    Article  ADS  MathSciNet  Google Scholar 

  15. Xu M, Xu S J. Stationkeeping strategy of Halo orbit in linear periodic control. Aerosp Control, 2008, 26(3): 13–18

    Google Scholar 

  16. BaoYin H X, McInnes C R. Solar sail halo orbits at the Sun-Earth artificial L-1 point. Celest Mech Dyn Astron, 2006, 94(2): 155–171

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Gong S P, Li J F, BaoYin H X. Solar radiation pressure used for formation flying control around the Sun-Earth libration point. Appl Math Mech-Engl Ed, 2009, 30(8): 1009–1016

    Article  MATH  Google Scholar 

  18. Gong S P, BaoYin H X, Li J F. Multi-satellite reconfiguration of formation around libration point. Trans Jpn Soc Aeronaut Space Sci, 2009, 51(174): 213–219

    Article  ADS  Google Scholar 

  19. Lü J, Li J F, Lu Q S, et al. Periodic orbits based on geometric structure of center manifold around Lagrange points. Astrophys Space Sci, 2012, 340(1): 17–25

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Lü.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lü, J., Lu, Q. & Wang, Q. Orbit control strategy for Lagrange point orbits based on an analytical method. Sci. China Phys. Mech. Astron. 56, 830–839 (2013). https://doi.org/10.1007/s11433-013-5051-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-013-5051-3

Keywords

Navigation