Skip to main content
Log in

Earth–Moon L1 libration point orbit continuous stationkeeping control using time-varying LQR and backstepping

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

Different periodic-gain stationkeeping control strategies in Earth–Moon L1 libration point orbits are proposed based on continuous LQR control and Floquet theory. The strategies are based on time-periodic infinite horizon LQR and backstepping technique with time-invariant LQR. Furthermore, a dead-band periodic-gain controller is proposed to account for the limited lifespan of the thrusters. The proposed controllers are shown to be more fuel efficient than conventional feedback linearization for the same settling time envelope of the tracking error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Farquhar RW (1970) The control and use of libration-point satellites. PhD thesis, National Aeronautics and Space Administration

  2. Broschart SB, Chung MJ, Hatch SJ, Ma JH, Sweetser TH, Weinstein-Weiss S, Angelopoulos V (2009) Preliminary trajectory design for the Artemis lunar mission. In: Astrodynamics specialist conference, number AAS, Pittsburgh, PA, August, pp 09–382

  3. Mather JC (2004) The James Webb space telescope and future IR space telescopes. In: Space conference and exhibit, number AIAA. San Diego, CA, September, pp 2004–5985

  4. Folta D, Woodard M (2010) ARTEMIS—the first Earth–Moon libration orbiter, 2010. http://www.nasa.gov/mission_pages/themis/news/artemis-orbit.html. Accessed 7 Jul 2014

  5. Kulkarni JE, Campbell ME, Dullerud GE (2006) Stabilization of spacecraft flight in halo orbits: an \({H}_\infty \) approach. IEEE Trans Control Syst Technol 14:572–578

    Article  Google Scholar 

  6. Williams K, Barden B, Howell K, Lo M, Wilson R (2000) Genesis halo orbit station keeping design. In: International symposium: spaceflight dynamics, Biarritz, France, June

  7. Folta D, Woodard M, Pavlak T, Haapala A, Howell K (2012) Earth–Moon libration stationkeeping: theory, modeling, and operations. In: 1st IAA/AAS conference on the dynamics and control of space systems, Porto, Portugal, March 19–21

  8. Rahmani A, Jalali A, Pourtakdoust SH (2003) Optimal approach to halo orbit control. In: AIAA guidance, navigation, and control conference, Austin, TX, August

  9. Xu M, Zhou N, Wang J (2012) Robust adaptive strategy for stationkeeping of halo orbit. In: 24th Chinese control and decision conference, pp 3086–3091

  10. Gustafson ED, Scheeres DJ (2008) Optimal timing of control law updates for unstable systems with continuous control. In: American control conference, Seattle, Washington, USA, June 11–13, 2008, pp 5198–5203

  11. Ascher UM, Petzold LR (1998) Computer methods for ordinary differential equations and differential-algebraic equations. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  12. Brenan KE, Campbell SL, Petzold LR (1996) Numerical solution of initial-value problems in differential-algebraic equations. SIAM, Philadelphia

    MATH  Google Scholar 

  13. Koon WS, Lo MW, Marsden JE, Ross SD (2011) Dynamical systems, the three-body problem and space mission design. Marsden Books, USA

    MATH  Google Scholar 

  14. Serban R, Koon WS, Lo M, Marsden JE, Petzold LR, Ross SD, Wilson RS (2000) Optimal control for halo orbit missions. In: Leonard NE, Ortega R (eds) Lagrangian and Hamiltonian methods for nonlinear control

  15. Serban R, Koon WS, Lo MW, Marsden JE, Petzold LR, Ross SD, Wilson RS (2000) Halo orbit mission correction maneuvers using optimal control. Automatica 38:571–583

    Article  MATH  MathSciNet  Google Scholar 

  16. Wilson RS, Howell KC, Lo MW (1999) Optimization of insertion cost for transfer trajectories to libration point orbits. In: AAS/AIAA astrodynamics specialist conference, San Diego, CA, pp 1–18

  17. Anthony W, Larsen A, Butcher EA, Parker Jeffrey S (2013) Impulsive guidance for optimal manifold-based transfers to Earth–Moon L1 halo orbits. In: 23rd AAS/AIAA spaceflight mechanics meeting, Kauai, Hawaii, Feb 10–14, pp 1–17

  18. Anthony W, Larsen A, Butcher EA (2013) Optimal impulsive manifold-based transfers with guidance to Earth–Moon L1 halo orbits. In: 23rd AAS/AIAA spaceflight mechanics meeting, Kauai, Hawaii, Feb 10–14, pp 1–20

  19. Howell KC (1984) Three-dimensional, periodic, halo orbits. Celestial Mech 32(1):53–71

    Article  MATH  MathSciNet  Google Scholar 

  20. Larsen A, Anthony W, Critz T, Nazari M, Deilami M, Butcher EA, Born G, MacMahon J (2012) Optimal transfers with guidance to the Earth–Moon L1 and L3 libration points using invariant manifolds: a preliminary study. In: AIAA/AAS astrodynamics specialist conference, Minneapolis, Minnesota, August 13–16

  21. Deshmukh V, Sinha SC (2004) Control of dynamic systems with time-periodic coefficients via the Lyapunov–Floquet transformation and backstepping technique. J Vib Control 10:1517–1533

    MATH  MathSciNet  Google Scholar 

  22. Deshmukh V, Sinha SC, Joseph P (2000) Order reduction and control of parametrically excited dynamical systems. J Vib Control 6:1017–1028

    Article  Google Scholar 

  23. Nazari M, Butcher EA, Bobrenkov OA (2014) Optimal feedback control strategies for periodic delayed systems. Int J Dyn Control 2:102–118

    Article  Google Scholar 

  24. Scheeres DJ, Ostro SJ, Hudson RS, DeJong EM, Suzuki S (1998) Dynamics of orbits close to asteroid 4179 Toutatis. Icarus 132:53–79

    Article  Google Scholar 

  25. Sinha SC, Joseph P (1994) Control of general dynamic systems with periodically varying parameters via Liapunov–Floquet transformation. J Dyn Syst Meas Control 116:650–658

    Article  MATH  Google Scholar 

  26. Schaub H, Junkins JL (2009) Analytical mechanics of space systems. AIAA, Reston

    MATH  Google Scholar 

  27. Mukherjee R, Chen D (1993) Asymptotic stability theorem for autonomous systems. J Guid Control Dyn 16:961–963

    Article  MATH  Google Scholar 

  28. Slotine J-JE, Li W (1991) Applied nonlinear control. Prentice Hall, New Jersey

    MATH  Google Scholar 

Download references

Acknowledgments

Financial support from AFOSR under Grant No. W911NF-11-1-0195 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morad Nazari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazari, M., Butcher, E.A. & Anthony, W. Earth–Moon L1 libration point orbit continuous stationkeeping control using time-varying LQR and backstepping. Int. J. Dynam. Control 5, 1089–1102 (2017). https://doi.org/10.1007/s40435-016-0256-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-016-0256-8

Keywords

Navigation