Skip to main content
Log in

Effects of ion bombardment on microcrystalline silicon growth by inductively coupled plasma assistant magnetron sputtering

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Hydrogenated microcrystalline silicon (μc-Si:H) thin films were deposited by inductively coupled plasma assistant magnetron sputtering (ICP-MS) in an Ar-H2 gas mixture. The role of ion bombardment in the growth of μc-Si:H films was studied with increasing negative bias voltages on the substrate holder from 0 to −100 V. Raman scattering, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM) were performed to investigate the microstructure changes of deposited Si films. Raman scattering showed that the high energy ion bombardment resulted in crystalline degradation of Si films. The XRD results showed the decrease and even elimination of preferential growth orientation of crystalline Si films with ion bombardment energy increase. The SiH bonding configuration changes and the increase of bonded hydrogen concentration were determined with the analysis of FTIR spectra. Furthermore, the dramatic evolution of cross-sectional morphology of Si thin films was detected by TEM observation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim S W, Choi D L. Nanocrystalline silicon fabrication by conventional plasma enhanced chemical vapor deposition for bottom gate thin film transistor. Mater Lett, 2010, 64:1975–1977

    Article  Google Scholar 

  2. Hou G F, Xue J M, Yuan Y J. A fast method to diagnose phase transition from amorphous to microcrystalline silicon. Sci China Ser G-Phys Mech Astron, 2007, 50:731–736

    Article  MATH  Google Scholar 

  3. Juang M H, Hu P S, Jang S L. Formation of polycrystalline-Si thin-film transistors with tunneling field-effect-transistor structure. Thin Solids Films, 2009, 518:3978–3981

    Article  ADS  Google Scholar 

  4. Cheng Q J, Xu S U, Ostrikov K K. Rapid, low-temperature synthesis of nc-Si in high-density, non-equilibrium plasmas: Enabling nanocrystallinity at very low hydrogen dilution. J Mater Chem, 2009, 19:5134–5140

    Article  Google Scholar 

  5. Yuan Y J, Zhang K L, Wei Z, et al. Influence of p-layer on the performance of n-i-p mu c-Si:H thin film solar cells. Sci China-Phys Mech Astron, 2010, 53:2042–2046

    Article  ADS  Google Scholar 

  6. Wang C L, Fan D W, Wang C B, et al. Poly-Si films with low aluminum dopant containing by aluminum-induced crystallization. Sci China-Phys Mech Astron, 2010, 53:111–115

    Article  ADS  Google Scholar 

  7. Yu W, Meng L H, Yuan J, et al. Influence of substrate temperature on growth of a-Si:H films by reactive facing target sputtering deposition. Sci China-Phys Mech Astron, 2010, 53:807–811

    Article  ADS  Google Scholar 

  8. Li Z Y, Li Y, Chen C, et al. Influence of silicon cluster on epitaxial growth of silicon carbide. Sci China-Phys Mech Astron, 2011, 54:1579–1582

    Article  Google Scholar 

  9. Wen C, Fu C, Tang J L, et al. The influence of environment temperatures on single crystalline and polycrystalline silicon solar cell performance. Sci China-Phys Mech Astron, 2012, 55:235–241

    Article  ADS  Google Scholar 

  10. Su Y J, Xu J, Zhu M. Hydrogenated poly-crystalline silicon thin films deposited by inductively coupled plasma assistant pulse dc twin magnetron sputtering (in Chinese). Acta Phys Sin, 2012, 61: 021804

    Google Scholar 

  11. Messier R. The nano-world of thin films. J Nanophoton, 2008, 2: 21995

    Article  Google Scholar 

  12. Bustarret E, Hachicha M A, Brunel M. Experiment determination of the nanocrystalline volume fraction in silicon thin films from Raman spectroscopy. Appl Phys Lett, 1988, 52:1675–1677

    Article  ADS  Google Scholar 

  13. Cheng Q J, Xu S Y, Huang S Y. Effective control of nanostructured phases in rapid, room temperature synthesis of nanocrystalline Si in high-density plasmas. Cryst Growth Design, 2009, 9:2863–2867

    Article  Google Scholar 

  14. Brodsky M H, Cardona M, Cuomo J J. Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering. Phys Rev B, 1977, 16:3556–3571

    Article  ADS  Google Scholar 

  15. Hu Y H, Chen G H, Wu Y Y. Infrared-transmission spectra and hydrogen content of hydrogenated amorphous silicon. Sci China Ser G-Phys Mech Astron, 2004, 47:381–392

    Article  ADS  Google Scholar 

  16. Sidhu L S, Kosteski T, Zukotynski S. Infrared vibration spectra of hydrogenated, deuterated, and tritiated amorphous silicon. J Appl Phys, 1999, 85:2574–2578

    Article  ADS  Google Scholar 

  17. Smets A H M, Kessels W M M, van de Sanden M C M. Vacancies and voids in hydrogenated amorphous silicon. Appl Phys Lett, 2003, 82:1547–1549

    Article  ADS  Google Scholar 

  18. Gu J H, Zhu M F, Wang L J. The compact microcrystalline Si thin film with structure uniformity in the growth direction by hydrogen dilution profile. J Appl Phys, 2005, 98:93505–93510

    Article  Google Scholar 

  19. Higashi G S, Chabal Y J, Trucks G W. Ideal hydrogen termination of the Si (111) surface. Appl Phys Lett, 1990, 56:656–658

    Article  ADS  Google Scholar 

  20. Stryahilev D, Diehl F, Schroder B. The splitting of absorption bands in IR spectra of anisotropic SiH monolayers covering the internal surfaces in μc-Si:H. J Non-Cryst Solids, 2000, 266–269:166–170

    Article  Google Scholar 

  21. Yu W, Meng L H, Yuan J. Influence of substrate temperature on growth of a-Si:H films by reactive facing target sputtering deposition. Sci China-Phys Mech Astron, 2010, 53:807–811

    Article  ADS  Google Scholar 

  22. Maley N. Critical investigation of the infrared-transmission-data analysis of hydrogenated amorphous silicon alloys. Phys Rev B, 1992, 46:2078–2085

    Article  ADS  Google Scholar 

  23. Chen Y S, Xu Y H, Gu J H. Study of amorphous incubation layers during the growth of microcrystalline silicon films under different deposition conditions. Chin Phys B, 2010, 19:87206

    Article  Google Scholar 

  24. Mullerava J, Sutta P, van Elzakker G. Microstructure of hydrogenated silicon thin films prepared from silane diluted with hydrogen. Appl Surf Sci, 2008, 254:3690–3695

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YuanJun Su.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Y., Su, Y., Zhu, M. et al. Effects of ion bombardment on microcrystalline silicon growth by inductively coupled plasma assistant magnetron sputtering. Sci. China Phys. Mech. Astron. 55, 2070–2075 (2012). https://doi.org/10.1007/s11433-012-4858-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-012-4858-7

Keywords

Navigation