Skip to main content
Log in

Electronic structure and optical property of boron doped semiconducting graphene nanoribbons

  • Research Paper
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

We present a system study on the electronic structure and optical property of boron doped semiconducting graphene nanoribbons using the density functional theory. Energy band structure, density of states, deformation density, Mulliken popular and optical spectra are considered to show the special electronic structure of boron doped semiconducting graphene nanoribbons. The C-B bond form is discussed in detail. From our analysis it is concluded that the Fermi energy of boron doped semiconducting graphene nanoribbons gets lower than that of intrinsic semiconducting graphene nanoribbons. Our results also show that the boron doped semiconducting graphene nanoribbons behave as p-type semiconducting and that the absorption coefficient of boron doped armchair graphene nanoribbons is generally enhanced between 2.0 eV and 3.3 eV. Therefore, our results have a great significance in developing nano-material for fabricating the nano-photovoltaic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang X, Zhi L J, Müllen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett, 2008, 8: 323–327

    Article  ADS  Google Scholar 

  2. Geim K. Graphene: Status and prospects. Science, 2009, 324: 1530–1534

    Article  ADS  Google Scholar 

  3. Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438: 197–200

    Article  ADS  Google Scholar 

  4. Lu G H, Ocola L E, Chen J H. Gas detection using low-temperature reduced graphene oxide sheets. Appl Phys Lett, 2009, 94: 083111

    Article  ADS  Google Scholar 

  5. Li X M, Zhu H W, Wang K L, et al. Graphene-on-silicon Schottky junction solar cells. Adv Mater, 2010, 22: 2743–2748.

    Article  Google Scholar 

  6. Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306: 666–669.

    Article  ADS  Google Scholar 

  7. Peres N M R, Castro Neto A H, Guinea F. Conductance quantization in mesoscopic graphene. Phys Rev B, 2006, 73: 195411

    Article  ADS  Google Scholar 

  8. Gunlycke D, Lawler H M, White C T. Room-temperature ballistic transport in narrow graphene strips. Phys Rev B, 2007, 75: 085418

    Article  ADS  Google Scholar 

  9. Nakada K, Fujita M. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys Rev B, 1996, 54: 17954–17961

    Article  ADS  Google Scholar 

  10. Motohiko E. Peculiar width dependence of the electronic properties of carbon nanoribbons. Phys Rev B, 2006, 73: 045432

    Article  Google Scholar 

  11. Gabor N M, Zhong Z H, Bosnick K, et al. Extremely efficient multiple electron-hole pair generation in carbon nanotube photodiodes. Science, 2009, 325: 1367–1371

    Article  ADS  Google Scholar 

  12. Way B M, Dahn J R. Preparation and characterization of BxC1−x thin films with the graphite structure. Phys Rev B, 1992, 46: 1697–1702

    Article  ADS  Google Scholar 

  13. Garcia L E, Baltazar S E, Romero A H, et al. Influence of S and P doping in a graphene sheet. J Comput Theor Nanosci, 2008, 5: 1–9

    Article  Google Scholar 

  14. Pontes R B, Fazzio A, Dalpian G M. Barrier-free substitutional doping of graphene sheets with boron atoms: Ab initio calculations. Phys Rev B, 2009, 79: 033412

    Article  ADS  Google Scholar 

  15. Biel B, Blase X, Triozon F, et al. Anomalous doping effects on charge transport in graphene nanoribbons. Phys Rev B, 2009, 102: 096803

    Article  Google Scholar 

  16. Hsu H, Reichl L E. Selection rule for the optical absorption of graphene nanoribbons. Phys Rev B, 2007, 76: 045418

    Article  ADS  Google Scholar 

  17. Capelle K. A bird’s-eye view of density-functional theory. J Phys, 2006, 36: 1318–1343

    Google Scholar 

  18. Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77: 3865–3868

    Article  ADS  Google Scholar 

  19. Troullier N, Martins J L. Efficient pseudopotentials for plane-wave calculations. Phys Rev B, 1991, 43: 1993–2006

    Article  ADS  Google Scholar 

  20. Kleinman L, Bylander D M. Efficacious form for model pseudopotentials. Phys Rev Lett, 1982, 48: 1425–1428

    Article  ADS  Google Scholar 

  21. Ordejón P, Artacho E, Soler J M. Self-consistent order-N density-functional calculations for very large systems. Phys Rev B, 1996, 53: R10441–10443

    Article  ADS  Google Scholar 

  22. Soler J M, Artacho E, Gale J D, et al. The SIESTA method for ab initio order-N materials simulation. J Phys-Condes Matter, 2002, 14: 2745–2779

    Article  ADS  Google Scholar 

  23. Artacho E, Sánchez-Portal D, Ordejón P, et al. Linear-scaling ab-initio calculations for large and complex systems. Phys Status Solidi B-Basic Solid State Phys, 1999, 215: 809–817

    Article  ADS  Google Scholar 

  24. Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations. Phys Rev B, 1976, 13: 5188–5192

    Article  MathSciNet  ADS  Google Scholar 

  25. Han M Y, Özyilmaz B, Zhang Y, et al. Energy band-gap engineering of graphene nanoribbons. Phys Rev Lett, 2007, 98: 206805

    Article  ADS  Google Scholar 

  26. Barone V, Hod O, Scuseria G E. Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett, 2006, 6: 2748–2754

    Article  ADS  Google Scholar 

  27. Chen A Q, Shao Q Y, Li Z. Special electronic structures and quantum conduction of B/P co-doping carbon nanotubes under electric field using the first principle. J Nanopart Res, 2011, 13: 2275–2283

    Article  Google Scholar 

  28. Panchakarla L S, Subrahmanyam K S, Saha S K, et al. Synthesis, structure, and properties of boron- and nitrogen-doped graphene. Adv Mater, 2009, 21: 4726–4730

    Google Scholar 

  29. Economou E N. Green’s Functions in Quantum Physics. Berlin: Springer, 1983

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to QingYi Shao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, A., Shao, Q., Wang, L. et al. Electronic structure and optical property of boron doped semiconducting graphene nanoribbons. Sci. China Phys. Mech. Astron. 54, 1438–1442 (2011). https://doi.org/10.1007/s11433-011-4408-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-011-4408-8

Keywords

Navigation