Skip to main content
Log in

N-Doped Hybrid Graphene and Boron Nitride Armchair Nanoribbons As Nonmagnetic Semiconductors with Widely Tunable Electronic Properties

  • Physical Chemistry of Nanoclusters and Nanomaterials
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The electronic and chemical properties of N-doped hybrid graphene and boron nitride armchair nanoribbons (N-doped a-GBNNRs) in comparison with graphene armchair nanoribbon (pristine a-GNR) and hybrid graphene and boron nitride armchair nanoribbon (C-3BN) are investigated using the density functional theory method. The results show that all the mentioned nanoribbons are nonmagnetic direct semiconductors and all the graphitic N-doped a-GBNNRs are n-type semiconductors while the rest are p-type semiconductors. The N-doped graphitic 2 and N-doped graphitic 3 structures have the lowest work function and the highest number of valence electrons (Lowdin charges) which confirms that they are effective for use in electronic device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

    Article  CAS  Google Scholar 

  2. B. Sanyal and O. Eriksson, Advanced Functional Materials: A Perspective from Theory and Experiment (Elsevier, Amsterdam, 2012).

    Google Scholar 

  3. S. Liang, J. Zhu, J. Ding, H. Bi, P. Yao, Q. Han, and X. Wang, Appl. Surf. Sci 357, 1593 (2015).

    Article  CAS  Google Scholar 

  4. S. Masoumi, H. Hajghasem, A. Erfanian, and A. Molaei Rad, Proc. Mater. Sci. 11, 407 (2015).

    Article  CAS  Google Scholar 

  5. H. Fakhri, A. R. Mahjoub, and A. H. Cheshme Khavar, Mater. Sci. Semicond. Process. 41, 38 (2016).

    Article  CAS  Google Scholar 

  6. Y. Li, J. Yan, Q. Su, E. Xie, and W. Lan, Mater. Sci. Semicond. Process. 27, 695 (2014).

    Article  CAS  Google Scholar 

  7. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Nat. Photon. 4, 611 (2010).

    Article  CAS  Google Scholar 

  8. A. Naderi, Mater. Sci. Semicond. Process. 31, 223 (2015).

    Article  CAS  Google Scholar 

  9. A. Celis, M. N. Nair, A. Taleb-Ibrahimi, E. H. Conrad, C. Berger, W. A. de Heer, and A. Tejeda, J. Phys. D: Appl. Phys. 49, 143001 (2016).

    Article  Google Scholar 

  10. K. Watanabe, T. Taniguchi, and H. Kanda, Nat. Mater. 3, 404 (2004).

    Article  CAS  Google Scholar 

  11. D. Pacile, J. C. Meyer, C. O. Girit, and A. Zettl, Appl. Phys. Lett. 92, 133107 (2008).

    Article  Google Scholar 

  12. F. L. Zheng, Y. Zhang, J. M. Zhang, and K. W. Xu, J. Phys. Chem. Solids 72, 256 (2011).

    Article  CAS  Google Scholar 

  13. M. Topsakal, E. Akturk, and S. Ciraci, Phys. Rev. B 79, 115442 (2009).

    Article  Google Scholar 

  14. J. Zhou, Q. Wang, Q. Sun, and P. Jena, Phys. Rev. B 81, 085442 (2010).

    Article  Google Scholar 

  15. H. Zeng, C. Zhi, Z. Zhang, X. Wei, X. Wang, W. Guo, Y. Bando, and D. Golberg, Nano. Lett. 10, 5049 (2010).

    Article  CAS  Google Scholar 

  16. K. N. Kudin, ACS Nano 2, 516 (2008).

    Article  CAS  Google Scholar 

  17. J. Nakamura, T. Nitta, and A. Natori, Phys. Rev. B 72, 205429 (2005).

    Article  Google Scholar 

  18. J. E. Padilha, R. B. Pontes, A. J. Roque da Silva, and A. Fazzio, Solid State Commun. 173, 24 (2013).

    Article  CAS  Google Scholar 

  19. C. Zhang, S. Zhao, C. Jin, A. L. Koh, Y. Zhou, W. Xu, Q. Li, Q. Xiong, H. Peng, and Z. Liu, Nat. Commun. 6, 1 (2015).

    Google Scholar 

  20. C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, Nat. Nanotechnol. 5, 722 (2010).

    Article  CAS  Google Scholar 

  21. N. P. Bellafont, D. R. Maneru, and F. Illas, Carbon 76, 155 (2014).

    Article  CAS  Google Scholar 

  22. A. Pereyaslavtsev, M. Rybin, T. Vasilieva, V. Miasnikov, and I. Sokolov, J. Nanophoton. 10, 012521 (2016).

    Article  Google Scholar 

  23. D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, and G. Yu, Nano Lett. 9, 1752 (2009).

    Article  CAS  Google Scholar 

  24. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  25. J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).

    Article  CAS  Google Scholar 

  26. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  27. F. L. Zheng, Y. Zhang, J. M. Zhang, and K. W. Xu, J. Mol. Struct. 984, 344 (2010).

    Article  CAS  Google Scholar 

  28. F. L. Zheng, Y. Zhang, J. M. Zhang, and K. W. Xu, J. Phys. Chem. Solids 72, 256 (2011).

    Article  CAS  Google Scholar 

  29. L. Sun, Q. Li, H. Ren, and J. Yang, J. Chem. Phys 129, 074704 (2008).

    Article  Google Scholar 

  30. S. H. Lim, R. Li, W. Ji, and J. Lin, Phys. Rev. B 76, 195406 (2007).

    Article  Google Scholar 

  31. K. Xiao, Y. Liu, P. Hu, G. Yu, Y. Sun, and D. Zhu, J. Am. Chem. Soc 127, 8614 (2005).

    Article  CAS  Google Scholar 

  32. S. Jalili and R. Vaziria, Mol. Phys. 109, 687 (2011).

    Article  CAS  Google Scholar 

  33. R. Czerw, M. Terrones, J. C. Charlier, X. Blase, B. Foley, R. Kamalakaran, N. Grobert, H. Terrones, D. Tekleab, P. M. Ajayan, W. Blau, M. Ruhle, and D. L. Carroll, Nano Lett. 1, 457 (2001).

    Article  CAS  Google Scholar 

  34. R. H. Fowler and L. Nordheim, Phys. Eng. Sci. 119, 173 (1928).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Razieh Habibpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habibpour, R., Kashi, E. & Vazirib, R. N-Doped Hybrid Graphene and Boron Nitride Armchair Nanoribbons As Nonmagnetic Semiconductors with Widely Tunable Electronic Properties. Russ. J. Phys. Chem. 92, 532–539 (2018). https://doi.org/10.1134/S0036024418030226

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024418030226

Keywords

Navigation