Skip to main content
Log in

Comparing the efficiencies of different detect strategies in the ping-pong protocol

  • Published:
Science in China Series G: Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

The way to compare the efficiencies of different detect strategies (DSs) in the “ping-pong” protocol is studied. The trade-off between information gain and disturbance is calculated and compared for different DSs. The comparison result primely tallies with our intuitional analysis. It is shown that the analysis of this trade-off is a feasible way to compare the performances of different DSs in theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vernam G S. Cipher printing telegraph systems for secret wire and radio telegraphic communications. J Am Inst Elect Eng, 1926, 55: 109–115

    Google Scholar 

  2. Shannon C E. Communication theory of secrecy systems. Bell Syst Technol J, 1949, 28: 656–715

    MathSciNet  Google Scholar 

  3. Bennett C H, Brassard G. Quantum cryptography: Public-key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing. Bangalore: IEEE press, 1984. 175–179

    Google Scholar 

  4. Ekert A K. Quantum cryptography based on Bell’s theorem. Phys Rev Lett, 1991, 67: 661–663

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Bennett C H. Quantum cryptography using any two nonorthogonal states. Phys Rev Lett, 1992, 68: 3121–3124

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Gisin N, Ribordy G, Tittel W, et al. Quantum cryptography. Rev Mod Phys, 2002, 74: 145–195

    Article  ADS  Google Scholar 

  7. Bostrom K, Felbinger T. Deterministic secure direct communication using entanglement. Phys Rev Lett, 2002, 89: 187902

    Article  ADS  Google Scholar 

  8. Deng F G, Long G L. Secure direct communication with a quantum one-time pad. Phys Rev A, 2004, 69: 052319

    Article  ADS  Google Scholar 

  9. Cai Q Y, Li B W. Deterministic secure communication without using entanglement. Chin Phys Lett, 2004, 21: 601–603

    Article  ADS  Google Scholar 

  10. Lucamarini M, Mancini S. Secure deterministic communication without entanglement. Phys Rev Lett, 2005, 94: 140501

    Article  ADS  Google Scholar 

  11. Deng F G, Long G L, Liu X S. Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys Rev A, 2003, 68: 042317

    Article  ADS  Google Scholar 

  12. Cai Q Y, Li B W. Improving the capacity of the Bostrom-Felbinger protocol. Phys Rev A, 2004, 69: 054301

    Article  ADS  Google Scholar 

  13. Gao T, Yan F L, Wang Z X. A simultaneous quantum secure direct communication scheme between the central party and other M parties. Chin Phys Lett, 2005, 22: 2473–2476

    Article  ADS  Google Scholar 

  14. Wang C, Deng F G, Li Y S, et al. Quantum secure direct communication with high-dimension quantum superdense coding. Phys Rev A, 2005, 71: 044305

    Article  ADS  Google Scholar 

  15. Wang C, Deng F G, Long G L. Multi-step quantum secure direct communication using multi-particle Green-Horne-Zeilinger state. Opt Commun, 2005, 253: 15–20

    Article  ADS  Google Scholar 

  16. Li X H, Deng F G, Zhou H Y. Improving the security of secure direct communication based on the secret transmitting order of particles. Phys Rev A, 2006, 74: 054302

    Article  ADS  Google Scholar 

  17. Li X H, Li C Y, Deng F G, et al. Quantum secure direct communication with quantum encryption based on pure entangled states. Chin Phys, 2007, 16: 2149–2153

    Article  ADS  Google Scholar 

  18. Nguyen B A. Quantum dialogue. Phys Lett A, 2004, 328: 6–10

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Man Z X, Zhang Z J, Li Y. Quantum dialogue revisited. Chin Phys Lett, 2005, 22: 22–24

    Article  ADS  Google Scholar 

  20. Ji X, Zhang S. Secure quantum dialogue based on single-photon. Chin Phys, 2006, 15: 1418–1420

    Article  ADS  Google Scholar 

  21. Man Z X, Xia Y J, Nguyen B A. Quantum secure direct communication by using GHZ states and entanglement swapping. J Phys B: At Mol Opt Phys, 2006, 39: 3855–3863

    Article  ADS  Google Scholar 

  22. Man Z X, Xia Y J. Controlled bidirectional quantum direct communication by using a GHZ state. Chin Phys Lett, 2006, 23: 1680–1682

    Article  ADS  Google Scholar 

  23. Xia Y, Fu C B, Zhang S, et al. Quantum dialogue by using the GHZ state. J Korean Phys Soc, 2006, 48: 24–27

    Google Scholar 

  24. Jin X R, Ji X, Zhang Y Q, et al. Three-party quantum secure direct communication based on GHZ states. Phys Lett A, 2006, 354: 67–70

    Article  ADS  Google Scholar 

  25. Man Z X, Xia Y J. Improvement of security of three-party quantum secure direct communication based on GHZ states. Chin Phys Lett, 2007, 24: 15–18

    Article  ADS  Google Scholar 

  26. Chen Y, Man Z X, Xia Y J. Quantum bidirectional secure direct communication via entanglement swapping. Chin Phys Lett, 2007, 24: 19–22

    Article  MATH  ADS  Google Scholar 

  27. Yang Y G, Wen Q Y. Quasi-secure quantum dialogue using single photons. Sci China Ser G-Phys Mech Astron, 2007, 50(5): 558–562

    Article  ADS  Google Scholar 

  28. Gao F, Guo F Z, Wen Q Y, et al. Revisiting the security of quantum dialogue and bidirectional quantum secure direct communication. Sci China Ser G-Phys Mech Astron, 2008, 51(5): 559 566

    Article  Google Scholar 

  29. Gao F, Qin S J, Wen Q Y, et al. Comment on: “Three-party quantum secure direct communication based on GHZ states”. Phys Lett A, 2008, 372: 3333–3336

    Article  ADS  MathSciNet  Google Scholar 

  30. Tan Y G, Cai Q Y. Classical correlation in quantum dialogue. Int J Quantum Inf, 2008, 6: 325–329

    Article  Google Scholar 

  31. Wojcik A. Eavesdropping on the “Ping-Pong” quantum communication protocol. Phys Rev Lett, 2003, 90: 157901

    Article  ADS  Google Scholar 

  32. Deng F G, Li X H, Li C Y, et al. Eavesdropping on the “ping-pong” quantum communication protocol freely in a noise channel. Chin Phys, 2007, 16: 277–281

    Article  ADS  Google Scholar 

  33. Cai Q Y. The “Ping-Pong” protocol can be attacked without eavesdropping. Phys Rev Lett, 2003, 91: 109801

    Article  ADS  Google Scholar 

  34. Zhang Z J, Man Z X. The improved Bostrom-Felbinger protocol against attacks without eavesdropping. Int J Quantum Inf, 2004, 2: 521–527

    Article  Google Scholar 

  35. Hoffmann H, Bostroem K, Felbinger T. Comment on “Secure direct communication with a quantum one-time pad”. Phys Rev A, 2005, 72: 016301

    Article  ADS  Google Scholar 

  36. Deng F G, Long G L. Reply to “Comment on ‘secure direct communication with a quantum one-time pad’”. Phys Rev A, 2005, 72: 016302

    Article  ADS  Google Scholar 

  37. Deng F G, Li X H, Li C Y, et al. Quantum secure direct communication network with Einstein-Podolsky-Rosen pairs. Phys Lett A, 2006, 359: 359–365

    Article  MATH  ADS  MathSciNet  Google Scholar 

  38. Hillery M, Bužek V, Berthiaume A. Quantum secret sharing. Phys Rev A, 1999, 59: 1829–1834

    Article  ADS  MathSciNet  Google Scholar 

  39. Cleve R, Gottesman D, Lo H-K. How to share a quantum secret. Phys Rev Lett, 1999, 83: 648–651

    Article  ADS  Google Scholar 

  40. Bennett C H, Brassard G, Mermin N D. Quantum cryptography without Bell theorem. Phys Rev Lett, 1992, 68: 557–559

    Article  MATH  ADS  MathSciNet  Google Scholar 

  41. Gao F, Guo F Z, Wen Q Y, et al. Quantum key distribution without alternative measurements and rotations. Phys Lett A, 2006, 349: 53–58

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Gao.

Additional information

Supported by the National High Technology Research and Development Program of China (Grant No. 2006AA01Z419), the National Natural Science Foundation of China (Grant Nos. 90604023 and 6087319), the National Laboratory for Modern Communications Science Foundation of China (Grant No. 9140C1101010601), the Natural Science Foundation of Beijing (Grant No. 4072020), and the ISN Open Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, F., Guo, F., Wen, Q. et al. Comparing the efficiencies of different detect strategies in the ping-pong protocol. Sci. China Ser. G-Phys. Mech. Astron. 51, 1853–1860 (2008). https://doi.org/10.1007/s11433-008-0185-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-008-0185-4

Keywords

Navigation