Skip to main content
Log in

Experiments and analysis of gold disk targets irradiated by smoothing beams of Xingguang II facilities with 350 nm wavelength

  • Published:
Science in China Series G: Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Gold disk targets were irradiated using focusing and beam smoothing methods on Xingguang (XG-II) laser facilities with 350 nm wavelength, 0.6 ns pulse width and 20–80 Joules energies. Laser absorption, light scattering and X-ray conversion were experimentally investigated. The experimental results showed that laser absorption and scattered light were about 90% and 10%, respectively, under focusing irradiation, but the laser absorption increased 5%–10% and the scattered light about 1% under the condition of beam smoothing. Compared with the case of focusing irradiation, the laser absorption was effectively improved and the scattered light remarkably dropped under uniform irradiation; then due to the decrease in laser intensity, X-ray conversion increased. This is highly advantageous to the inertial confinement fusion. However, X-ray conversion mechanism basically did not change and X-ray conversion efficiency under beam smoothing and focusing irradiation was basically the same.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lindl J, Amendt P, Berger R, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility. Phys Plasm, 2004, 11(2): 339–491

    Article  ADS  Google Scholar 

  2. Chang T Q, Zhang J, Zhang J T, et al. Laser Plasma Interaction and Laser Fusion (in Chinese). Changsha: Hunan Science and Technology Press, 1991

    Google Scholar 

  3. Lindl J. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys Plasm, 1995, 2(11): 3933–4024

    Article  ADS  Google Scholar 

  4. Zhang J, Chang T Q. Fundaments of the Targets Physics for Laser Fusion (in Chinese). Beijing: National Defense Industry Press, 2004

    Google Scholar 

  5. Zhang J T. Laser Plasma Interaction Physics and Simulation (in Chinese). Zhengzhou: Henan Science and Technology Press, 1999

    Google Scholar 

  6. Kruer W. The Physics of Laser Plasma Interactions. New York: Addison-Wesley, 1988

    Google Scholar 

  7. Sakaiya T, Azechi H, Matsuoka M, et al. Ablative Rayleigh-Taylor instability at short wavelengths observed with Moiré interferometry. Phys Rev Lett, 2002, 88(14): 145003

    Google Scholar 

  8. Rubenchik A, Witkowski S. Handbook of Physics of Laser Plasma. Amsterdam: Elsevier Science Publishing, 1991

    Google Scholar 

  9. Batani D, Strati F, Stabile H, et al. Hugoniot data for carbon at megabar pressures. Phys Lett Rev, 2004, 92(6): 065503

    Google Scholar 

  10. Koenig M, Faral B, Boudenne J, et al. Optical smoothing technique for shock wave generation in laser-produced plasmas. Phys Rev E, 1994, 50(5): R3314–R3317

    Article  ADS  Google Scholar 

  11. Delamater N, Lindman E, Magelssen G, et al. Observation of reduced beam deflection using smoothed beams in gas-filled hohlraum symmetry experiments at Nova. Phys Plasm, 2000, 7(5): 1609–1613

    Article  ADS  Google Scholar 

  12. Kato Y, Mima K, Miyanaga N, et al. Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression. Phys Rev Lett, 1984, 53(11): 1057–1060

    Article  ADS  Google Scholar 

  13. Dixit S, Lawson J, Manes K, et al. Kinoform phase plates for focal plane irradiance profile control. Opt Lett, 1994, 19(6): 417–419

    ADS  Google Scholar 

  14. Deng X, Liang X, Chen Z. Uniform illumination of large targets using a lens array. Appl Opt, 1986, 25(3): 377–380

    ADS  Google Scholar 

  15. Stevenson M, Norman M, Bett T, et al. Binary-phase zone plate arrays for the generation of uniform focal profiles. Opt Lett, 1994, 19(6): 363–365

    Article  ADS  Google Scholar 

  16. Obenschain S, Grun J, Herbst J, et al. Laser-target interaction with induced spatial incoherence. Phys Rev Lett, 1986, 56(26): 2807–2810

    Article  ADS  Google Scholar 

  17. Skupsky S, Short R, Kessler T, et al. Improved laser-beam uniformity using the angular dispersion of frequency-modulated light. J Appl Phys, 1989, 66(8): 3456–3462

    Article  ADS  Google Scholar 

  18. Nakano H, Tsukakimoto K, Miyanaga N, et al. Spectrally dispersion amplified spontaneous emission for improving irradiation uniformity into high power Nd:glass laser system. J Appl Phys, 1993, 75(5): 2122–2131

    Article  ADS  Google Scholar 

  19. Veron D, Ayral H, Gouedard C, et al. Optical spatial smoothing of Nd-glass laser beam. Opt Comm, 1988, 65(1): 42–48

    Article  ADS  Google Scholar 

  20. Moody J, Baldis H, Montgomery D, et al. Beam smoothing effects on the stimulated Brillouin scattering (SBS) instability in Nova exploding foil plasmas. Phys plasm, 1995, 2(11): 4285–4296

    Article  ADS  Google Scholar 

  21. Glenzer S, Berger R, Divol L, et al. Reduction of stimulated scattering losses from hohlraum plasmas with laser beam smoothing. Phys Plasm, 2001, 8(5): 1692–1696

    Article  ADS  Google Scholar 

  22. Glenzer S, Suter L, Berger R, et al. Hohlraum energetics with smoothed laser beams. Phys Plasm, 2000, 7(6): 2585–2593

    Article  ADS  Google Scholar 

  23. Batani D, Nazarov W, Hall T, et al. Foam-induced smoothing studied through laser-driven shock waves. Phys Rev E, 2000, 62(6): 8573–8582

    Article  ADS  Google Scholar 

  24. Stevenson R, Oades K, Thomas B, et al. Evidence for high-efficiency laser-heated Hohlraum performance at 527 nm. Phys Rev Lett, 2005, 94(5): 055006

    Google Scholar 

  25. Fujioka S, Shiraga H, Nishikino M, et al. First observation of density profile in directly laser-driven polystyrene targets for ablative Rayleigh-Taylor instability research. Phys Plasm, 2003, 10(12): 4784–4789

    Article  ADS  Google Scholar 

  26. Batani D, Morelli A, Tomasin M, et al. Equation of state data for iron at pressures beyond 10 Mbar. Phys Rev Lett, 2002, 83(23): 235502

    Google Scholar 

  27. Obenschain S, Pawley C J, Mostovych A, et al. Reduction of Raman scatting in a plasma to convective levels using induced spatial incoherence. Phys Rev Lett, 1989, 62(7): 768–771

    Article  ADS  Google Scholar 

  28. Mostovych A, Obenschain S, Gardner J, et al. Brilluin-scattering measurements from plasmas irradiated with spatially and temporally incoherent laser light. Phys. Rev. Lett., 1987, 59(11): 1193–1196

    Article  ADS  Google Scholar 

  29. Fu S Z, Sun R Q, Huang X G, et al. Optimazative design of uniform illumination system on ’shenguang-II’ laser facilities. Chin J Lasers, 2003, 30(2): 129–133

    Google Scholar 

  30. Mead W, Stover K, Kauffman R, et al. Modeling, measurements, and analysis of X-ray from 0.26-μm-laser-irradiated gold disks. Phys Rev A, 1988, 38(10): 5275–5288

    Article  ADS  Google Scholar 

  31. Chakera J, Arora V, Sailaja S, et al. Dependence of soft X-ray conversion on atomic composition in laser produced plasma of gold-copper mix-Z targets. Appl Phys Lett, 2003, 83(1): 27–29

    Article  ADS  Google Scholar 

  32. Baldis H, Labaune C, Moody J, et al. Localization of stimulated Brillouin scattering in random phase plate speckles. Phys Rev Lett, 1998, 80(9): 1900–1903

    Article  ADS  Google Scholar 

  33. Moody J, MacGowan B, Rothenberg J, et al. Backscatter reduction using combined Spatial, temporal, and polarization beam smoothing in a long-scale-length laser plasma. Phys Rev Lett, 2001, 86(13): 2810–2813

    Article  ADS  Google Scholar 

  34. Bodner S, Colombant D, Gardner J, et al. Direct-drive laser fusion: Status and prospects. Phys Plasm, 1998, 5(5): 1901–1918

    Article  ADS  Google Scholar 

  35. Yang J M, Ding Y K, Yi R Q. et al. Quantitative measurement of soft X-ray spectrum using transmission grating spectrometer. Acta Phys Sin (in Chinese), 2001, 50(9): 1723–1728

    Google Scholar 

  36. Sun K X, Yang J M, Zheng Z J. A sub-keV X-ray spectrometer used in laser plasma interaction experiments. High Power Laser Part Beams (in Chinese), 1990, 2(1): 16–22

    Google Scholar 

  37. Liu S Y, Teng H, Ding Y K, et al. Experimental investigation on absorption and scattering of gold disk irradiated by laser with 0.351 μm. Acta Phys Sin (in Chinese), 1997, 46(10): 1917–1925

    Google Scholar 

  38. Colombant D, Tonon G. X-ray emission in laser-produced plasmas. J Appl Phys, 1973, 44(8): 3524–3537

    Article  ADS  Google Scholar 

  39. Rosen M, Phillion D, Rupert V, et al. The interaction of 1.06 μm laser radiation with high Z disk targets. Phys Fluids, 1979, 22(10): 2020–2031

    Article  ADS  Google Scholar 

  40. Qi L Y, Jiang X H, Zhao X W, et al. Study on mechanism aoubt generation and restraining of hot electron produced by laser with short wavelength. Acta Phys Sin (in Chinese), 2000, 49(3): 492–496

    Google Scholar 

  41. Young P, Berger R, Estabrook K, et al. Measurements of backscattered light from the interaction of 0.35 μm laser light with high-Z targets. Phys Fluids B, 1992, B4(8): 2605–2613

    Article  ADS  Google Scholar 

  42. Drake R, Kauffman R, Lasinski B, et al. The angular dependence of the absorption of 0.35 μm laser-produced plasmas. Phys Fluids, 1991, B3(12): 3477–3484

    ADS  Google Scholar 

  43. Afshar-rad T, Coe S, Willi O, et al. Evidence of stimulated Raman scattering occurring in laser filaments in long-scaled-length plasmas. Phys Fluids, 1992, B4(5): 1301–1322

    ADS  Google Scholar 

  44. Bosch R, Gabl E, Kania D, et al. Effects of induced spatial incoherence on laser light absorption and X-ray conversion at 0.53 μm. Phys Rev A, 1991, 43(2): 953–960

    Article  ADS  Google Scholar 

  45. Fuchs J, Labaune C, Depierreux S, et al. Modification of spatial and temporal gains of stimulated Brillouin and Raman Scattering by polarization smoothing. Phys Rev Lett, 2000, 84(14): 3089–3092

    Article  ADS  Google Scholar 

  46. Sigel R, Eidmann K, Lavarenne F, et al. Conversion of laser light into soft X-ray. Part I: Dimensional analysis. Phys Fluids B, 1990, 2(1): 199–207

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang ShaoEn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, S., Zhang, B., Liu, S. et al. Experiments and analysis of gold disk targets irradiated by smoothing beams of Xingguang II facilities with 350 nm wavelength. Sci. China Ser. G-Phys. Mech. Astron. 50, 716–730 (2007). https://doi.org/10.1007/s11433-007-0069-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-007-0069-z

Keywords

Navigation